

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bmc

Synthesis and antituberculosis activity of 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazone derivatives

Özlen Güzel, Nilgün Karalı*, Aydın Salman

Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116 Beyazıt, Istanbul, Turkey

ARTICLE INFO

Article history:
Received 30 April 2008
Revised 11 August 2008
Accepted 22 August 2008
Available online 27 August 2008

Keywords: 5-Methyl-1*H*-indole-2,3-diones 5-Trifluoromethoxy-1*H*-indole-2,3-diones Thiosemicarbazones Antituberculosis activity

ABSTRACT

New series of 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones **3a-t**, 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones **4a-y** and 5-trifluoromethoxy-1-morpholinomethyl-1*H*-indole-2,3-dione 3-thiosemicarbazones **5a-m** were synthesized. The structures of the synthesized compounds were confirmed by spectral data and elemental analysis. The new 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione derivatives, along with previously synthesized 5-methyl-1*H*-indole-2,3-dione 3-thiosemicarbazones **6a-l**, were evaluated for in vitro antituberculosis activity against *Mycobacterium tuberculosis* H37Rv. 5-Methyl-1*H*-indole-2,3-dione 3-thiosemicarbazones (**3q-s**) and 5-trifluoromethoxy-1-morpholinomethyl-1*H*-indole-2,3-dione 3-thiosemicarbazones (**5e** and **5j-l**) were found to be the most potent inhibitors of *M. tuberculosis* growth described in this study.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a growing global health problem because of lack of proper therapeutic agents for its remedy.1 The human immunodeficiency virus pandemic, which contributes substantially to the morbidity and mortality from TB, and the emergence of multidrug-resistant (MDR) strains of M. tuberculosis have compounded the problem.² Although infections by drug-sensitive strains can be successfully cured, the emergence of drug resistance has prompted new drug research, particularly the search for new drug targets. When TB cases cannot be treated by first-line protocols due to resistance issues, the last resort for combating MDR infections relies on the action of second-line anti-TB drugs.³ Among these second-line drugs for the treatment of MDR-TB, thiacetazone is a thiosemicarbazone antimicrobial that has been widely used in many developing contries.⁴ Thiosemicarbazones have had a lengthy history as potential prophylactic therapeutics for human disease.⁵ Recently, thiacetazone-related compounds have been synthesized and described for their activity against M. tuberculosis, M. avium and other mycobacterial species. Results indicate that SRI-224, SRI-286, ^{6,7} oxazolyl thiosemicarbazones⁸ and some S-alkylisothiosemicarbazones^{9,10} can be useful in the therapy and prophylaxis of mycobacteria infections and can represent a template for the development of novel antimycobacterial drugs (Fig. 1). However, the mechanism of action of thiacetazone and some structural analogues remain poorly understood. 7

The discovery of the potent antimicrobial activity of 2-indolinones led in the past decade to extensive synthesis of related compounds and as a result, a variety of broad spectrum antimicrobial agents were developed. In recent years, Schiff and Mannich bases of 1H-indole-2,3-diones are reported to exhibit broad-spectrum chemotherapeutic properties such as anti-TB, antiviral and anticancer activities. 11-17 We described previously the anti-TB profile of 3thiosemicarbazone, 3-phenacylisothiosemicarbazone and 3-thiazolinehydrazone derivatives of some 1*H*-2-indolinones which have exhibited a remarkable anti-TB activity. 18,19 The results reflect the effects of the various substituents introduced in the R₁, R₂ and R₃. Investigations regarding the structure–activity relationships of the tested compounds revealed that halogenation in the R₁, elongation of alkyl chain in the R₂, replacement of the alkyl in the R₂ with cyclohexyl or (non)substituted phenyl and the presence of substitution in the R₃ were efficient in increasing anti-TB activity. Moreover, R₁-nitro substituted derivatives were more active than the corresponding R₁-fluoro substituted derivatives in the 1H-indole-2,3dione 3-thiosemicarbazones. The presence of the morpholine ring in some R₁-nitro substituted N-Mannich bases also seems to have a significant impact on the resultant anti-TB activity (Fig. 2).

In the light of these findings, new 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazone derivatives were synthesized in order to obtain more potent and less toxic anti-TB compounds. The structures of all the synthesized compounds were determined by analytical and spectral (IR, ¹H NMR, ¹³C NMR-APT, HETCOR-2D, HSQC-2D and LCMS-APCI) methods. Log*P* (o/w)

^{*} Corresponding author. Fax:+90 212 440 02 52. E-mail address: karalin@istanbul.edu.tr (N. Karalı).

Figure 1. Structures of thiacetazone (I), SRI-224 (II), SRI-286 (III), oxazolyl thiosemicarbazones (IV) and S-alkylisothiosemicarbazones (V).

Figure. 2. Structures of 3-thiosemicarbazone (VI), 3-phenacylisothiosemicarbazone (VII) and 3-thiazolinehydrazone (VIII) derivatives of 1H-indole-2,3-diones.

values of the compounds were calculated with MOE. These new compounds, along with previously reported compounds, ^{20,21} were

tested against *M. tuberculosis* H37Rv to construct the structure–anti-TB activity relationship.

R₁= CH₃, F₃CO

$$\begin{split} R_2 &= CH_3, \ C_2H_5, \ CH_2\text{-}CH=CH_2, \ n\text{-}C_4H_9, \ cyclo-}C_6H_{11}, \ C_6H_5CH_2, \ C_6H_5, \ 4\text{-}CH_3C_6H_4, \ 4\text{-}CH_3OC_6H_4, \ 4\text{-}FC_6H_4, \ 4\text{-}FC_6H_4, \ 4\text{-}NO_2C_6H_4 \ 4\text{-}NO_2C_6H_$$

Scheme 1. Reagents and conditions: (i) NaH, CH₃I, DMF, stir, room temperature, 30 min. and reflux, 4 h (ii) EtOH, reflux, 5 h (iii) morpholine, 37% HCHO, absolute EtOH, stir, rt, 10 h.

 Table 1

 Log P values and primary in vitro antituberculosis activity screening results of 3-6

3, 4 and 6 5

Compound	R ₁	R ₂	R ₃	Log P (o/w)	IC ₉₀ (μg/mL)	IC ₅₀ (μg/mL)	Activity
3a	CH ₃	CH ₂ CH=CH ₂	Н	1,6950	>100	18.088	Weakly active
3b	CH ₃	C ₄ H ₉	Н	2,4300	0.911	0.418	Active
3c	CH ₃	C ₆ H ₅ CH ₂	Н	2,8210	>100	14.895	Weakly active
3d	CH ₃	4-FC ₆ H ₄	Н	2,9740	1.587	1.362	Active
Be Bf	CH₃ CH₃	2-BrC ₆ H ₄ 3-BrC ₆ H ₄	H H	3,6170 3,6560	>100 1.489	2.898 1.146	Weakly active Active
3g	CH ₃	4-NO ₂ C ₆ H ₄	H	2,7560	>100	>100	Inactive
3h	CF ₃ O	CH ₃	H	2,1338	>100	1.311	Weakly active
3i	CF ₃ O	C ₂ H ₅	Н	2,4748	>100	0.767	Weakly active
3j	CF ₃ O	CH ₂ CH=CH ₂	Н	2,7958	>100	0.635	Weakly active
3k	CF ₃ O	C_4H_9	Н	3,5308	>100	5.476	Weakly active
31	CF ₃ O	cycl-C ₆ H ₁₁	Н	4,1128	>100	33.267	Weakly active
3m	CF ₃ O	$C_6H_5CH_2$	Н	3,9218	>100	1.110	Weakly active
3n	CF ₃ O	C_6H_5	Н	3,7878	>100	14.211	Weakly active
3o	CF ₃ O	$4-CH_3C_6H_4$	Н	4,0858	>100	3.472	Weakly active
3p	CF ₃ O	4-CH ₃ OC ₆ H ₄	Н	3,7438	>100	3.339	Weakly active
3q	CF ₃ O	4-FC ₆ H ₄	Н	3,9408	1.546	1.333	Active
3r	CF₃O	4-ClC ₆ H ₄	Н	4,3798	1.521	1.259	Active
3s 3t	CF₃O	4-BrC ₆ H ₄	H H	4,5858	1.530	1.341	Active
31 4a	CF₃O CH₃	4-NO ₂ C ₆ H ₄ CH ₃	н СН₃	3,7228 1,2300	>100 >100	3.77 >100	Weakly active
1 a 4b	CH ₃	C ₂ H ₅	CH ₃	1,5710	>100	>100	Inactive
4c	CH ₃	CH ₂ CH=CH ₂	CH ₃	1,8920	>100	>100	Inactive
4d	CH ₃	C ₄ H ₉	CH ₃	2,6270	>100	>100	Inactive
4e	CH ₃	C ₆ H ₅ CH ₂	CH ₃	3,0180	>100	>100	Weakly active
4f	CH ₃	4-FC ₆ H ₄	CH ₃	3,0370	>100	>100	Weakly active
4g	CH ₃	2-BrC ₆ H ₄	CH ₃	3,6800	>100	>100	Inactive
4h	CH ₃	3-BrC ₆ H ₄	CH ₃	3,7190	>100	5.495	Weakly active
4i	CH ₃	$4-NO_2C_6H_4$	CH ₃	2,8190	>100	>100	Inactive
4j	CF ₃ O	CH ₃	CH ₃	2,3308	>100	>100	Inactive
4k	CF ₃ O	C_2H_5	CH ₃	2,6718	>100	5.987	Weakly active
41	CF ₃ O	$CH_2CH=CH_2$	CH ₃	2,9928	>100	2.731	Weakly active
4m	CF ₃ O	C_4H_9	CH ₃	3,7278	>100	40.76	Weakly active
4n	CF ₃ O	cycl-C ₆ H ₁₁	CH ₃	4,3098	>100	19.778	Weakly active
40	CF₃O	C ₆ H ₅ CH ₂	CH ₃	4,1188	>100	7.299	Weakly active
4p	CF₃O	C ₆ H ₅	CH₃ CH₃	3,9848	>100 >100	<0.2	Weakly active
4q 4r	CF₃O	4-CH ₃ C ₆ H ₄	CH ₃	4,2828 4,1378	>100	66.434 0.865	Weakly active Weakly active
4r 4s	CF₃O CF₃O	4-FC ₆ H ₄ 4-ClC ₆ H ₄	CH ₃	4,5768	>100	1.706	Weakly active
4t	CF ₃ O	$4-\text{CiC}_6\text{H}_4$	CH ₃	4,7828	>100	0.612	Weakly active
4y	CF ₃ O	4-NO ₂ C ₆ H ₄	CH ₃	3,9198	>100	>100	Inactive
-9 5a	CF ₃ O	CH ₃	_	1,8838	>100	1.566	Weakly active
5 b	CF ₃ O	C ₂ H ₅	_	2,2248	>100	2.095	Weakly active
5c	CF ₃ O	CH ₂ CH=CH ₂	_	2,5458	>100	1.003	Weakly active
5d	CF ₃ O	C_4H_9	_	3,2808	>100	12.317	Weakly active
5e	CF ₃ O	cycl-C ₆ H ₁₁	_	3,8628	5.694	1.816	Active
5f	CF ₃ O	$C_6H_5CH_2$	_	3,6718	>100	1.001	Weakly active
5g	CF ₃ O	C_6H_5	_	3,5378	>100	4.847	Weakly active
5h	CF ₃ O	4-CH ₃ C ₆ H ₄	_	3,8358	>100	1.373	Weakly active
5i 	CF₃O	4-CH ₃ OC ₆ H ₄	_	3,4938	>100	2.404	Weakly active
5j	CF₃O	4-FC ₆ H ₄	_	3,6908	3.057	2.329	Active
5k =1	CF ₃ O	4-ClC ₆ H ₄	_	4,1298	3.041	2.468	Active
51 	CF₃O	4-BrC ₆ H ₄	_	4,3358	3.034	2.550	Active
5m Sa	CF₃O CH₃	4-NO ₂ C ₆ H ₄ CH ₃	— Н	3,4728 1,0330	>100 >100	6.683 >100	Weakly active
oa 6b	CH ₃	Сн ₃ С ₂ Н ₅	н Н	1,3740	>100	6.962	Weakly active
50 60	CH ₃	cycl-C ₆ H ₁₁	H	3,0120	0.795	0.705	Active
5d	CH ₃	C ₆ H ₅	H	2,6870	1.433	1.076	Active
Se Se	CH ₃	4-CH ₃ C ₆ H ₄	H	2,9850	>100	1.422	Weakly active
Sf	CH ₃	4-ClC ₆ H ₄	н	3,2790	3.568	2.526	Active
6g	CH ₃	$4-BrC_6H_4$	н	3,4850	>100	22.669	Weakly active
6h	CH ₃	cycl-C ₆ H ₁₁	CH ₃	3,2090	>100	>100	Inactive
Si	CH ₃	C ₆ H ₅	CH ₃	2,8840	>100	46.512	Weakly activ
6j	CH ₃	4-CH ₃ C ₆ H ₄	CH ₃	3,1820	>100	>100	Inactive
6k	CH ₃	4-ClC ₆ H ₄	CH ₃	3,4760	>100	>100	Inactive
61	CH ₃	4-BrC ₆ H ₄	CH ₃	3,6820	>100	>100	Inactive

2. Results and discussion

2.1. Chemistry

In this study, 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione (**1a,b**) and 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione (**2a,b**) reacted with different *N*-substituted thiosemicarbazides in ethanol containing a catalytic amount of sulphuric acid, to give the corresponding 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones (**3a-t**) and 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones (**4a-y**). 1-Morpholinomethyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones (**5a-m**) were synthesized from the consecutive treatment of **3h-t** with formaldehyde solution and morpholine (Scheme 1).

The structures of the synthesized compounds were confirmed by elemental analyses and spectral (IR, ¹H NMR, ¹³C NMR-APT, HETCOR-2D, HSQC-2D and LCMS-APCI) data. The IR spectra of 3, 4 and 5 showed absorption bands in the 3372-3160, 1703-1672 and 1238-1100 cm⁻¹ regions resulting from the NH, C=O and C=S functions, respectively. ¹³C NMR-APT of **3a, 3f, 3h, 3o, 4d,** 4j, 4s, 5a and 5h, HETCOR spectra of 3k, 4m and 5d, and HSQC spectra of **3b. 3s. 4b. 4h. 4p** and **5l** supported the IR findings and displayed signals at δ 140.45–143.28, 161.16–163.46 and 176.65– 178.06 ppm which showed that there was no ¹³C-¹H connection attributed to the indole C_3 , indole C_2 and C=S functions. The ¹H NMR spectra of 3a-t displayed the NH protons of the thiosemicarbazone moiety (δ 8.91–11.12 and 12.36–12.98 ppm) and the indole NH proton (δ 11.07–11.53 ppm) as three separate signals. The ¹H NMR and ¹³C NMR spectra of **4a-y** showed two NH signals due to the thiosemicarbazone moiety (δ 8.93–11.17 and 12.27– 12.91 ppm) and a signal assigned to the N-CH₃ resonance (δ 3.07–3.29 and 26.11–26.62 ppm) confirming the 1-methyl-1*H*-indole-2,3-dione 3-thiosemicarbazone structure. Observation of only two NH signals assigned to the thiosemicarbazone moiety (δ 8.86– 11.15 and 12.25–12.76 ppm) and of a singlet due to $N-CH_2-N$ function (δ 4.41–4.53 and 62.19–66.44 ppm) and of signals attributed to morpholine in the ¹H and ¹³C NMR spectra of **5a-m** provided support for N-Mannich base formation. LCMS-APCI of 3a, 3b, 3d, 3f, 3i, 3l, 3o, 3r, 3s, 4b, 4d, 4h, 4k, 4n, 4p, 4s, 5b, 5e, 5h, 5k and 5l chosen as prototypes displayed molecular ions with different intensities.

Log P (o/w) values of the compounds were calculated with MOE (Table 1).

2.2. Primary antituberculosis activity

The new 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3thiosemicarbazones 3a-t, 1-methyl-5-methyl/trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazones 4a-y and 1-morpholinomethyl-5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazones 5a-m, along with previously reported 5-methyl-1Hindole-2,3-dione 3-thiosemicarbazones 6a-1, were evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA). The primary anti-TB screening was performed in accordance with the protocol of the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) Southern Research Institute.²² Rifampin was used as the control drug in the tests. Compounds demonstrating a percent inhibition of bacterial growth of greater than or equal to 90% in the primary screen were retested against M. tuberculosis H37Rv, to determine the actual minimum inhibitory concentration (MIC) in the MABA. The MIC was defined as the lowest concentration effecting a reduction in fluorescence of 90%, relative to controls. This value was determined from the dose-response curve as the IC $_{90}$ using a curve fitting program. Any IC $_{90}$ value of \leqslant 10 µg/mL was considered "Active" for antitubercular activity. Compounds active in the initial screen were tested for cytotoxicity (IC $_{50}$) in VERO cells. Cytotoxicity was determined from the dose–response curve as the IC $_{50}$ using a curve fitting program. Concurrent with the determination of MICs, compounds were tested for cytotoxicity in VERO cells at concentrations $10\times$ the MIC for *M. tuberculosis* H37Rv (Table 1). The selectivity index (SI) was defined as the ratio of the measured IC $_{50}$ in VERO cells to the MIC (Table 2). The MIC and SI values for moving compounds into in vivo testing have to be \leqslant 6.25 µg/mL and \geqslant 10 (occasionally lower), respectively.

5-Methyl-1*H*-indole-2,3-dione 3-thiosemicarbazones (**3b**, **3d**, **3f. 6c. 6d** and **6f**). 5-trifluoromethoxy-1*H*-indole-2.3-dione 3-thiosemicarbazones (3a-s) and 5-trifluoromethoxy-1-morpholinomethyl-1*H*-indole-2.3-dione 3-thiosemicarbazones (**5e** and **5i-l**) were found to be the most potent inhibitors of M. tuberculosis growth described in this study. MIC values (IC90) of these compounds are 0.911, 1.587, 1.489, 0.795, 1.433, 3.568, 1.546, 1.521, 1.530, 5.694, 3.057, 3.041 and $3.034 \mu g/mL$, respectively. However, as can be seen from Table 2, the whole of the tested compounds showed poor selectivity for mycobacteria. When these data are examined, it is observed that the anti-TB activity was increased due to elongation of the alkyl chain. Generally, replacement of the alkyl in the R₂ with cyclohexyl, phenyl, 4-fluorophenyl, 4-chlorophenyl or 4-bromophenyl has been found to yield more active compounds. The increase in activity against M. tuberculosis by alkyl chain elongation is related to lipophilicity as confirmed by the log Pvalues of compounds (Table 1). In fact, in 5-methyl-1H-indole-2,3dione-3-thiosemicarbazones, the lowest MIC value was found for the R₂-cyclohexyl substituted **6c** (0.795 μ g/mL), R₂-butyl substituted **3b** (0.911 μ g/mL), R₂-phenyl substituted **6d** (1.433 μ g/mL) and R_2 -(3-bromophenyl) substituted **3f** (1.489 µg/mL). In addition, among 5-trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazones and its N-Mannich bases, the most active compounds were **3q-s** and **5l-j** incorporating 4-fluorophenyl, 4-chlorophenyl and 4-bromophenyl at R₂. The presence of the morpholine ring in some R₁-trifluoromethoxy substituted N-Mannich bases also seems to have a significant impact on the resultant anti-TB activity. Compound 5e, a morpholine derivative incorporating a cyclohexyl group at R₂, was found to be one of active inhibitors, whereas ligand 31 showed weakly activity. It is interesting to note that, for the R₂-(3-bromophenyl) substituted **3f**, 5-methyl-1*H*-indole-2,3dione 3-thiosemicarbazone derivative 3f was substantially more active than both the R_2 -(2-bromophenyl) substituted **3e** and the R_2 -(4-bromophenyl) substituted **6g**. In comparison with 5methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones 3a-t and 6a-l, none of the 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones **4a-t** were

Table 2 The IC_{90} , EC_{50} and SI values of some 3, 5 and 6 against *M. tuberculosis* H37Rv

Compound	R ₁	R ₂	R_3	IC_{90} (µg/mL)	EC_{50} (µg/mL)	SI
3b	CH ₃	C ₄ H ₉	Н	0.911	4.390	4.81888
3d	CH_3	$4-FC_6H_4$	Н	1.587	<0.195	<0.1228
3f	CH_3	$3-BrC_6H_4$	Н	1.489	0.704	0.4728
3q	CF_3O	$4-FC_6H_4$	Н	1.546	2.536	1.64036
3r	CF_3O	4-ClC ₆ H ₄	Н	1.521	6.391	4.20184
3s	CF ₃ O	$4-BrC_6H_4$	Н	1.530	5.767	3.76928
5e	CF ₃ O	cycl-C ₆ H ₁₁	_	5.694	23.437	4.11608
5j	CF ₃ O	$4-FC_6H_4$	_	3.057	2.396	0.78377
5k	CF_3O	4-ClC ₆ H ₄	_	3.041	9.713	3.19401
51	CF_3O	4-BrC ₆ H ₄	_	3.034	7.453	2.45649
6c	CH_3	cycl-C ₆ H ₁₁	Н	0.795	1.572	1.97735
6d	CH_3	C ₆ H ₅	Н	1.433	1.063	0.7418
6f	CH_3	$4-ClC_6H_4$	Н	3.568	12.361	3.4644
Rifampin	_	_	-	0.125	>100	>800

active against *M. tuberculosis*. This modification was decreased the anti-TB activity of new compounds.

3. Conclusions

New series of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione-3-thiosemicarbazones were synthesized, their structures were confirmed by spectral data and elemental analysis. The new derivatives, along with previously reported 5-methyl-1H-indole-2,3dione-3-thiosemicarbazones, were evaluated for in vitro anti-TB activity. The anti-TB screening results evidenced that many of the compounds from the series have emerged as potent anti-TB agents. The aim of this work was to reveal the correlation between structure and anti-TB activity in a series of 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones. The anti-TB activity was increased due to elongation of the alkyl chain. Generally, replacement of the alkyl in the R2 with cyclohexyl and (non)substituted phenyl have been found to yield more active compounds. The absence of substitution at N₁ of indole ring and the increase of lipophilicity of the compounds were thought to be responsible for their high activity against M. tuberculosis. In conclusion, structural modification may lead to new derivatives with enhanced activity and high selectivity for mycobacteria.

4. Experimental

Melting points were estimated with a Buchi 540 melting point apparatus in open capillaries and are uncorrected. Elemental analyses were performed on a Thermo Finnigan Flash EA 1112 elemental analyzer. IR spectra were recorded on KBr discs, using a Perkin-Elmer Model 1600 FT-IR spectrometer. $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR APT, HETCOR-2D and HSQC-2D spectra were obtained on Bruker Avance DPX 400 and Varian INOVA 500 spectrophotometers using DMSO- $^4\mathrm{G}$. Mass spectra were determined on a Mass-AGILENT 1100 MSD instruments. All chemicals and solvents were purchased from Merck–Schuchardt, Aldrich and Fluka. Log P (o/w) values were calculated with MOE (version 2009.05, Chemical Computing Group, Montreal, Canada).

4.1. General method for the synthesis of *N*-substituted thiosemicarbazides

To a solution of hydrazine hydrate (5 mmol) in ethanol (10 mL), a suspension of an appropriate isothiocyanate (5 mmol) in ethanol (10 mL) was added dropwise with vigorous stirring and cooling in an ice bath. The mixture was allowed to stand overnight. The crystals formed were recrystallized from ethanol.

4.2. General method for the synthesis of 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione (2a/2b)

A suspension of 5-methyl/trifluoromethoxy-1H-indole-2,3-dione 1a/1b (5 mmol) and NaH (50% dispersion in mineral oil) (0.2 g) in anhydrous DMF (5 mL) was stirred for 30 min at room temperature. After addition of iodomethane (15 mmol), the mixture was refluxed for 4 h. The product was poured onto ice and water then filtered.

4.3. General method for the synthesis of 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones (3a-t)

A solution of *N*-substituted thiosemicarbazides (3.5 mmol) in ethanol (10 mL) was added to a solution of 5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione **1a/1b** (3.5 mmol) in ethanol (20 mL). After addition of a drop of concentrated sulfuric acid, the mixture was refluxed on a water bath for 5 h. The product

formed after cooling was filtered and washed with ethanol or recrystallized from ethanol.

4.3.1. 5-Methyl-1*H*-indole-2,3-dione 3-(*N*-allylthiosemicarbazone) (3a)

Yellow powder (78%): mp 220–221 °C; IR (KBr): ν 3335, 3289 (NH), 1696 (C=O), 1187 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.28 (s, 3H, 5-CH₃), 4.24 (t, J = 5.61 Hz, 2H, allyl C_1 -H₂), 5.12 (dd, J = 10.49, 1.71 Hz, 1H, allyl C_3 -H_{cis}), 5.18 (dd, J = 17.32, 1.71 Hz, 1H, allyl C_3 -H_{trans}), 5.88–5.93 (m, 1H, allyl C_2 -H), 6.80 (d, J = 7.81 Hz, 1H, indole C_6 -H), 7.13 (d, J = 7.81 Hz, 1H, indole C_7 -H), 7.48 (s, 1H, indole C_4 -H), 9.39 (t, J = 5.61 Hz, 1H, N₄-H), 11.07 (s, 1H, indole NH), 12.56 (s, 1H, N₂-H); ¹³C NMR (APT, DMSO- $d_6/125$ MHz): δ 21.07 (5-CH₃), 46.82 (allyl C_1), 111.21 (indole C_6), 116.65 (allyl C_3), 120.42 (indole C_3), 121.67 (indole C_4), 131.74 (indole C_5), 131.99 (indole C_7), 132.37 (indole C_7), 134.45 (allyl C_2), 140.51 (indole C_3), 163.13 (indole C_2), 177.77 (C=S); LCMS-APCI (-) m/z (%): 273 (MH⁻, 100). Anal. Calcd for C_{13} H₁₄N₄OS (274.34): C_7 C, 56.91; H, 5.14; N, 20.42. Found: C_7 C, 56.63; H, 5.38; N, 20.48.

4.3.2. 5-Methyl-1*H*-indole-2,3-dione 3-(*N*-butylthiosemicarbazone) (3b)

Yellow powder (72%): mp 179–180 °C; IR (KBr): ν 3252 (NH), 1695 (C=O), 1130 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 0.93 (t, 3H, J = 7.37 Hz, butyl C_4 -H), 1.34 (hex., J = 7.44 Hz, 2H, butyl C_3 -H), 1.61 (quint., J = 7.32 Hz, 2H, butyl C_2 -H), 2.31 (s, 3H, 5-CH₃), 3.61 (q, J = 6.87 Hz, 2H, butyl C_1 -H), 6.82 (d, J = 7.93 Hz, 1H, indole C_6 -H), 7.17 (dd, J = 7.95, 0.89 Hz, 1H, indole C_7 -H), 7.50 (s, 1H, indole C_4 -H), 9.26 (t, J = 5.82 Hz, 1H, N_4 -H), 11.10 (s, 1H, indole NH), 12.53 (s, 1H, N_2 -H); ¹³C NMR (HSQC-2D, DMSO- $d_6/125$ MHz): δ 14.22 (butyl C_4), 20.06 (butyl C_3), 21.06 (5-CH₃), 31.03 (butyl C_2), 44.33 (butyl C_1), 111.21 (indole C_6), 120.46 (indole C_3), 121.61 (indole C_4), 131.72 (indole C_5), 131.93 (indole C_7), 132.13 (indole C_7), 140.45 (indole C_3), 163.14 (indole C_2), 177.34 (C=S); LCMS-APCI (-/+) m/z (%): m/z 289 (MH $^-$, 100), 291 (MH $^+$, 58), 282 (100). Anal. Calcd for C_1 4H₁₈N₄OS (290.38): C, 57.91; H, 6.25; C0, 19.29. Found: C0, 57.31; H, 6.26; C1, 19.70.

4.3.3. 5-Methyl-1*H*-indole-2,3-dione 3-(*N*-benzylthiosemicarbazone) (3c)

Orange crystals (93%): mp 236–237 °C; IR (KBr): υ 3367, 3160 (NH), 1686 (C=0), 1142 (C=S); 1 H NMR (DMSO- d_6 /500 MHz): δ 2.27 (s, 3H, 5-CH₃), 4.86 (d, 2H, J = 6.34 Hz, benzyl CH₂), 6.80 (d, J = 8.29 Hz, 1H, indole C₆-H), 7.14 (d, J = 7.81 Hz, 1H, indole C₇-H), 7.24 (t, J = 7.32 Hz, 1H, benzyl C₄-H), 7.31–7.36 (m, 4H, benzyl C_{2,3,5,6}-H), 7.47 (s, 1H, indole C₄-H), 9.77 (t, J = 6.34 Hz, 1H, N₄-H), 11.08 (s, 1H, indole NH), 12.62 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₆N₄OS (324.40): C, 62.94; H, 4.97; N, 17.27. Found: C, 62.12; H, 4.72; N, 17.15.

4.3.4. 5-Methyl-1*H*-indole-2,3-dione 3-[*N*-(4-fluorophenyl) thiosemicarbazone] (3d)

Orange powder (86%): mp 229–230 °C; IR (KBr): υ 3303, 3207 (NH), 1689 (C=O), 1163 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 2.31 (s, 3H, 5-CH₃), 6.83 (d, J = 7.94 Hz, 1H, indole C₆-H), 7.19 (dd, J = 7.95, 0.95 Hz, 1H, indole C₇-H), 7.27 (t, J = 7.74 Hz, 2H, phenyl C_{2,6}-H), 7.59–7.62 (m, 3H, indole C₄-H and phenyl C_{3,5}-H), 10.81 (s, 1H, N₄-H), 11.16 (s, 1H, indole NH), 12.78 (s, 1H, N₂-H); LCMS-APCI (+) m/z (%): 329 (MH⁺, 100). Anal. Calcd for C₁₆H₁₃FN₄OS (328.36): C, 58.52; H, 3.99; N, 17.06. Found: C, 58.32; H, 4.02; N, 17.23.

4.3.5. 5-Methyl-1*H*-indole-2,3-dione 3-[*N*-(2-bromophenyl) thiosemicarbazone] (3e)

Orange powder (99%): mp 249 °C; IR (KBr): υ 3207 (NH), 1689 (C=O), 1134 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.48 (s, 3H, 5-CH₃), 6.82 (d, J = 7.81 Hz, 1H, indole C₆-H), 7.17 (dd, J = 7.81,

0.97 Hz, 1H, indole C_7 -H), 7.29 (td, J = 7.56, 1.47 Hz, 1H, phenyl C_4 -H), 7.45 (td, J = 7.56, 1.46 Hz, 1H, phenyl C_5 -H), 7.54–7.57 (m, 2H, phenyl C_3 -H and indole C_4 -H), 7.73 (dd, J = 7.81, 0.97 Hz, 1H, phenyl C_6 -H), 10.77 (s, 1H, N_4 -H), 11.13 (s, 1H, indole NH), 12.80 (s, 1H, N_2 -H). Anal. Calcd for C_{16} H₁₃BrN₄OS (389.26): C, 49.37; H, 3.37; N, 14.39. Found: C, 49.51; H, 3.38; N, 14.36.

4.3.6. 5-Methyl-1*H*-indole-2,3-dione 3-[*N*-(3-bromophenyl) thiosemicarbazone] (3f)

Yellow powder (72%): mp 236–238 °C; IR (KBr): υ 3310 (NH), 1687 (C=O), 1145 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 2.31 (s, 3H, 5-CH₃), 6.84 (d, J = 7.91 Hz, 1H, indole C₆-H), 7.19 (d, J = 8.08 Hz, 1H, indole C₇-H), 7.39 (t, J = 8.00 Hz, 1H, phenyl C₅-H), 7.47 (d, J = 8.27 Hz, 1H, phenyl C₆-H), 7.61 (s, 1H, indole C₄-H), 7.71 (d, J = 8.00 Hz, 1H, phenyl C₆-H), 7.91 (s, 1H, phenyl C₂-H), 10.86 (s, 1H, N₄-H), 11.18 (s, 1H, indole NH), 12.84 (s, 1H, N₂-H); ¹³C NMR (APT-DMSO- $d_6/125$ MHz): δ 21.10 (5-CH₃), 111.34 (indole C₆), 120.28 (indole C_{3a}), 121.21 (phenyl C₃), 122.25 (indole C₄), 124.82 (phenyl C₆), 128.24 (phenyl C₄), 129.08 (phenyl C₂), 130.65 (phenyl C₅), 131.87 (indole C₅), 132.44 (indole C₇), 133.24 (indole C_{7a}), 140.52 (phenyl C₁), 140.85 (indole C₃), 163.22 (indole C₂), 176.65 (C=S); LCMS-APCI (+) m/z (%): 385, 387 (100, 17), 383, 385 (83, 100). Anal. Calcd for C₁₆H₁₃BrN₄OS (389.26): C, 49.37; H, 3.37; N, 14.39. Found: C, 49.38; H, 3.04; N, 14.41.

4.3.7. 5-Methyl-1*H*-indole-2,3-dione 3-[*N*-(4-nitrophenyl) thiosemicarbazone] (3g)

Red powder (73%): mp 262–263 °C; IR (KBr): υ 3193 (NH), 1694 (C=O), 1177 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.30 (s, 3H, 5-CH₃), 6.83 (d, J = 8.30 Hz, 1H, indole C₆-H), 7.19 (d, J = 7.32 Hz, 1H, indole C₇-H), 7.60 (s, 1H, phenyl C₄-H), 8.07 (d, J = 8.79 Hz, 2H, phenyl C_{2.6}-H), 8.28 (dd, J = 6.84, 1.95 Hz, 2H, phenyl C_{3.5}-H), 11.06 (s, 1H, N₄-H), 11.17 (s, 1H, indole NH), 12.98 (s, 1H, N₂-H). Anal. Calcd for C₁₆H₁₃N₅O₃S (355.37): C, 54.08; H, 3.69; N, 19.71. Found: C, 54.30; H, 3.73; N, 20.15.

4.3.8. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-methylthiosemicarbazone) (3h)

Yellow powder (80%): mp 234 °C; IR (KBr): v 3295 (NH), 1699 (C=O), 1142 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 3.10 (d, J = 4.6 Hz, 3H, CH₃), 7.02 (d, J = 8.50 Hz, 1H, indole C₇-H), 7.36 (dd, J = 8.50, 1.80 Hz, 1H, indole C₆-H), 7.63 (d, J = 1.40 Hz, 1H, indole C₄-H), 9.39 (q, J = 4.50 Hz, 1H, N₄-H), 11.37 (s, 1H, indole NH), 12.46 (s, 1H, N₂-H); ¹³C NMR (APT, DMSO- $d_6/125$ MHz): δ 31.73 (CH₃), 112.52 (indole C₇), 114.18 (indole C₄), 118.11 (q, J = 255.72, CF₃O), 121.93 (indole C_{3a}), 124.26 (indole C₆), 130.88 (indole C_{7a}), 141.50 (indole C₃), 143.97 (indole C₅), 163.12 (indole C₂), 178.06 (C=S). Anal. Calcd for C₁₁H₉F₃N₄O₂S (318.27): C, 41.51; H, 2.85; N, 17.60. Found: C, 42.28; H, 2.53; N, 17.97.

4.3.9. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-ethylthiosemicarbazone) (3i)

Yellow crystals (67%): mp 235–236 °C; IR (KBr): υ 3324, 3182 (NH), 1696 (C=O), 1155 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 1.21 (t, J = 7.10 Hz, 3H, ethyl CH₃), 3.65 (p, J = 7.0 Hz, 2H, ethyl CH₂), 7.02 (d, J = 8.50, Hz, 1H, indole C₇-H), 7.36 (dd, J = 8.50, 2.30 Hz, 1H, indole C₆-H), 7.66 (d, J = 1.70 Hz, 1H, indole C₄-H), 9.41 (t, J = 5.60 Hz, 1H, N₄-H), 11.36 (s, 1H, indole NH), 12.43 (s, 1H, N₂-H); LCMS-APCI (-/+): m/z (%) 333 (MH⁺, 100), 331 (MH⁻, 87), 230 (100). Anal. Calcd for C₁₂H₁₁F₃N₄O₂S (332.30): C, 43.37; H, 3.34; N, 16.86. Found: C, 43.34; H, 2.81; N, 16.82.

4.3.10. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-allylthiosemicarbazone) (3j)

Orange crystals (74%): mp 224–226 °C; IR (KBr): v 3228 (NH), 1698 (C=O), 1172 (C=S); 1 H NMR (DMSO- d_6 /500 MHz): δ 4.26 (t, J = 5.49 Hz, 2H, allyl C_1 -H), 5.14 (dd, J = 10.22, 1.37 Hz, 1H, allyl

 C_3 - H_{cis}), 5.19 (dd, J = 17.23, 1.67 Hz, 1H, allyl C_3 - H_{trans}), 5.87–5.93 (m, 1H, allyl C_2 -H), 7.00 (d, J = 8.54 Hz, 1H, indole C_7 -H), 7.33 (dd, J = 8.54, 1.53 Hz, 1H, indole C_6 -H), 7.66 (d, J = 1.53 Hz, 1H, indole C_4 -H), 9.54 (t, J = 5.79 Hz, 1H, N_4 -H), 11.53 (s, 1H, indole N_1), 12.47 (s, 1 H, N_2 -H). Anal. Calcd for $C_{13}H_{11}F_3N_4O_2S$ (344.31): C_1 , 45.35; C_1 , C_2 , C_3 , C_4 , 16.33.

4.3.11. 5-Trifluoromethoxy-1 *H*-indole-2,3-dione 3-(*N*-n-butyl-thiosemicarbazone) (3k)

Yellow powder (87%): mp 234 °C; IR (KBr): v 3257 (NH), 1695 (C=O), 1158 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 0.92 (t, J = 7.30 Hz, 3H, butyl C₄-H), 1.31–1.37 (m, 2H, butyl C₃-H), 1.62 (p, J = 7.40 Hz, 2H, butyl C₂-H), 3.62 (q, J = 6.80 Hz, 2H, butyl C₁-H), 7.00 (d, J = 8.50, Hz, 1H, indole C₇-H), 7.34 (dd, J = 8.60, 2.40 Hz, 1 H, indole C₆-H), 7.66 (d, J = 1.70 Hz, 1H, indole C₄-H), 9.37 (t, J = 5.90 Hz, 1H, N₄-H), 11.35 (s, 1H, indole NH), 12.44 (s, 1H, N₂-H); ¹³C NMR (HETCOR-2D, DMSO- $d_6/125$ MHz): δ 14.19 (butyl C₄), 20.05 (butyl C₃), 30.98 (butyl C₂), 44.38 (butyl C₁), 112.55 (indole C₇), 114.43 (indole C₄), 120.68 (q, J = 258.10, CF₃O), 121.97 (indole C_{3a}), 124.34 (indole C₆), 131.00 (indole C_{7a}), 141.56 (indole C₃), 143.97 (indole C₅), 163.16 (indole C₂), 177.33 (C=S). Anal. Calcd for C₁₄H₁₅F₃N₄O₂S (360.35): C, 46.66; H, 4.20; N, 15.55. Found: C, 46.94; H, 3.82; N, 15.67.

4.3.12. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-cyclohe-xylthiosemicarbazone) (3l)

Yellow powder (75%): mp 249 °C; IR (KBr): v 3262 (NH), 1696 (C=O), 1162 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 1.13–1.94 (m, 10H, cycl. $C_{2.3,4.5,6}$ -H), 4.18–4.24 (m, 1H, cycl. C_{1} -H), 7.01 (d, J = 8.50 Hz, 1H, indole C_{7} -H), 7.35, 7.37 (2xdd, J = 8.50, 2.40 Hz, 1H, indole C_{6} -H), 7.76 (d, J = 2.40 Hz, 1H, indole C_{4} -H), 8.91 (d, J = 8.50 Hz, 1H, N₄-H), 11.37 (s, 1H, indole NH), 12.49 (s, 1H, N₂-H); LCMS-APCI (-/+): m/z (%) 387 (MH $^{+}$, 100), 385 (MH $^{-}$, 6), 265 (100). Anal. Calcd for C_{16} H₁₇F₃N₄O₂S (386.39): C, 49.73; H, 4.43; N, 14.50. Found: C, 49.37; H, 4.30; N, 14.46.

4.3.13. 5-Trifluoromethoxy-1*H*-indole-2,3-dione-3-(*N*-benzylthiosemicarbazone) (3m)

Orange crystals (90%): mp 215–216 °C; IR (KBr): υ 3221 (NH), 1702 (C=O), 1238 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 4.88 (d, J = 4.10 Hz, 2H, benzyl CH₂), 7.00 (d, J = 8.54 Hz, 1H, indole C₇-H), 7.25 (t, J = 6.40 Hz, 1H, benzyl C₄-H), 7.33–7.36 (m, 5H, indole C₆-H, benzyl C_{2,3,4,5,6}-H), 7.64 (d, J = 1.83 Hz, 1H, indole C₄-H), 9.90 (t, J = 6.25 Hz, 1H, N₄-H), 11.35 (s, 1H, indole NH), 12.53 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₃F₃N₄O₂S.1/2H₂O (403.38): C, 50.61; H, 3.49; N, 13.89. Found: C, 50.72; H, 3.36; N, 13.61.

4.3.14. 5-Trifluoromethoxy-1*H*-indole-2,3-dione-3-(*N*-phenylthiosemicarbazone) (3n)

Orange powder (99%): mp 229–232 °C; IR (KBr): υ 3316, 3282 (NH), 1698 (C=O), 1171 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 7.02 (d, J = 8.54 Hz, 1H, indole C₇-H), 7.28 (t, J = 7.32 Hz, 1H, phenyl C₄-H), 7.35 (dd, J = 8.54, 2.44 Hz, 1H, indole C₆-H), 7.43 (t, J = 7.32 Hz, 2H, phenyl C_{3.5}-H), 7.58 (d, J = 7.32 Hz, 2H, phenyl C_{2.6}-H), 7.79 (d, J = 1.83 Hz, 1H, indole C₄-H), 10.87 (s, 1H, N₄-H), 11.38 (s, 1H, indole NH), 12.64 (s, 1H, N₂-H). Anal. Calcd for C₁₆H₁₁F₃N₄O₂S (380.34): C, 50.53; H, 2.92; N, 14.73. Found: C, 50.38; H, 2.83; N, 14.76.

4.3.15. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-methylphenyl)thiosemicarbazone] (30)

Orange crystals (88%): mp 230–233 °C; IR (KBr): υ 3307 (NH), 1697 (C=O), 1153 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 2.34 (s, 3H, CH₃), 7.03 (d, J = 8.50 Hz, 1H, indole C₇-H), 7.24 (d, J = 8.10 Hz, 2H, phenyl C_{3.5}-H), 7.37 (dd, J = 8.50, 1.70 Hz, 1H, indole C₆-H), 7.46 (d, J = 8.30 Hz, 2H, phenyl C_{2.6}-H), 7.67 (d, J = 1.40 Hz,

1H, indole C₄-H), 10.66 (s, 1H, N₄-H), 11.20 (s, 1H, indole NH), 12.36 (s, 1H, N₂-H); 13 C NMR (APT DMSO- $d_6/125$ MHz): δ 21.32 (CH₃), 112.86 (indole C₇), 115.17 (indole C₄), 120.91 (q, J= 255.45 Hz, CF₃O), 122.16 (indole C_{3a}), 124.82 (indole C₆), 126.38 (phenyl C₃, C₅), 129.61 (phenyl C₂, C₆),131.75 (indole C_{7a}), 136.30 (phenyl C₄), 136.44 (phenyl C₁), 142.10 (indole C₃), 144.29 (indole C₅), 163.46 (indole C₂), 177.10 (C=S); LCMS-APCI (-/+): m/z (%) 395 (MH⁺, 100), 393 (MH⁻, 100). Anal. Calcd for C₁₇H₁₃F₃N₄O₂S (394.37): C, 51.77; H, 3.32; N, 14.21. Found: C, 51.71; H, 3.06; N, 14.39.

4.3.16. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-methoxyphenyl)thiosemicarbazone] (3p)

Orange powder (89%): mp 228–229 °C; IR (KBr): υ 3266 (NH), 1701 (C=O), 1154 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 3.77 (s, 3H, OCH₃), 6.98 (d, J = 9.16 Hz, 2H, phenyl C_{3.5}-H), 7.01 (d, J = 8.24 Hz, 1H, indole C₇-H),, 7.35 (dd, J = 8.54, 2.30 Hz, 1H, indole C₆-H), 7.44 (d, J = 9.15 Hz, 2H, phenyl C₂, 6-H), 7.78 (br s, 1H, indole C₄-H), 10.78 (s, 1H, N₄-H), 11.37 (s, 1H, indole NH), 12.59 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₃F₃N₄O₃S (410.37): C, 49.76; H, 3.19; N, 13.65. Found: C, 49.40; H, 3.31; N, 13.88.

4.3.17. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-fluorophenyl)thiosemicarbazone] (3q)

Orange powder (84%): mp 224–227 °C; IR (KBr): υ 3291 (NH), 1690 (C=O), 1154 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 7.01 (d, J = 8.54 Hz, 1H, indole C_7 -H), 7.26 (t, J = 8.84 Hz, 2H, phenyl $C_{3,5}$ -H), 7.35 (dd, J = 8.54, 2.44 Hz, 1H, indole C_6 -H), 7.58 (dd, J = 8.84, 4.88 Hz, 2H, phenyl $C_{2,6}$ -H), 7.76 (br s, 1H, indole C_4 -H), 10.87 (s, 1H, N₄-H), 11.39 (s, 1H, indole NH), 12.65 (s, 1H, N₂-H). Anal. Calcd for C_{16} H₁₀F₄N₄O₂S (398.33): C, 48.24; H, 2.53; N, 14.07. Found: C, 48.86; H, 2.45; N, 14.21.

4.3.18. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-chlorophenyl)thiosemicarbazone] (3r)

Orange crystals (77%): mp 233–234 °C; IR (KBr): υ 3300 (NH), 1698 (C=O), 1157 (C=S); ¹H NMR (DMSO- d_6 /400 MHz): δ 6.94 (d, J = 8.50 Hz, 1H, indole C_7 -H), 7.28 (dd, J = 8.50, 1.70 Hz, 1H, indole C_6 -H), 7.41 (d, J = 8.70 Hz, 2H, phenyl $C_{3,5}$ -H), 7.56 (d, J = 8.70 Hz, 2H, phenyl $C_{2,6}$ -H), 7.69 (d, J = 1.50 Hz, 1H, indole C_4 -H), 10.83 (s, 1H, N_4 -H), 11.33 (s, 1H, indole NH), 12.61 (s, 1H, N_2 -H); LCMS-APCI (-/+): m/z (%) 415, 417 [(MH $^+$, MH $^+$ +2) 100, 39], 413, 415 [(MH $^-$, MH $^-$ +2) 100, 51], 230 (79). Anal. Calcd for C_{15} H₁₀ClF₃N₄O₂S (414.78): C, 46.33; H, 2.43; N, 13.51. Found: C, 46.49; H, 2.07; N, 13.76.

4.3.19. 5-Trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-bromophenyl)thiosemicarbazone] (3s)

Orange crystals (95%): mp 238–239 °C; IR (KBr): υ 3302 (NH), 1698 (C=O), 1161 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 7.02 (d, J = 8.29 Hz, 1H, indole C_7 -H), 7.35 (dd, J = 8.29, 2.44 Hz, 1H, indole C_6 -H), 7.57–7.62 (m, 4H, phenyl $C_{2,3,5,6}$ -H), 7.77 (d, J = 1.95 Hz, 1H, indole C_4 -H), 10.88 (s, 1H, N_4 -H), 11.39 (s, 1H, indole NH), 12.69 (s, 1H, N_2 -H); ¹³C NMR (HSQC-2D, DMSO- d_6 /125 MHz): δ 112.94 (indole C_7), 117.19 (indole C_4), 119.31 (phenyl C_4), 120.91 (q, J = 255.93 Hz, C_7 30), 122.03 (indole C_{3a}), 124.99 (indole C_6), 128.42 (phenyl C_3 , C_5), 132.02 (phenyl C_2 , C_6), 132.21 (indole C_{7a}), 138.41 (phenyl C_1), 142.12 (indole C_3), 144.31 (indole C_5), 163.46 (indole C_2), 177.10 (C=S); LCMS-APCI (-): m/z (%) 457, 459 [(MH $^-$, MH $^-$ +2) 97, 100]. Anal. Calcd for C_{16} H₁₀BrF₃N₄O₂S (459.24): C, 41.85; H, 2.19; N, 12.20. Found: C, 42.38; H, 2.06; N, 12.73.

4.3.20. 5-Trifluoromethoxy-1*H*-indole-2,3-dione-3-[*N*-(4-nitrophenyl)thiosemicarbazone] (3t)

Orange powder (60%): mp 246–247 °C; IR (KBr): v 3283 (NH), 1698 (C=O), 1151 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 7.03 (d, J = 8.54 Hz, 1H, indole C₇-H), 7.38 (dd, J = 8.54, 1.83 Hz, 1H, in-

dole C_6 -H), 7.77 (br s, 1H, indole C_4 -H), 8.06 (d, J = 9.15 Hz, 2H, phenyl C_2 , $_6$ -H), 8.30 (d, J = 9.15 Hz, 2H, phenyl C_3 , $_5$ -H), 11.12 (s, 1H, N_4 -H), 11.44 (s, 1H, indole NH), 12.85 (s, 1H, N_2 -H). Anal. Calcd for $C_{16}H_{10}F_3N_5O_4S$ (425.34): C, 45.18; H, 2.37; N, 16.47. Found: C, 45.08; H, 2.26; N, 16.39.

4.4. General method for the synthesis of 1-methyl-5-methyl/trifluoromethoxy-1*H*-indole-2,3-dione 3-thiosemicarbazones (4a-v)

A solution of *N*-substituted thiosemicarbazides (3.5 mmol) in ethanol (10 mL) was added to a solution of 1-methyl-5-methyl/tri-fluoromethoxy-1*H*-indole-2,3-dione **2a/2b** (3.5 mmol) in ethanol (20 mL). After addition of a drop of concentrated sulfuric acid, the mixture was refluxed on a water bath for 5 h. The product formed after cooling was filtered and washed with ethanol or recrystallized from ethanol.

4.4.1. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-(*N*-methylthiosemicarbazone) (4a)

Yellow powder (88%): mp 259–60 °C; IR(KBr): ν 3238 (NH), 1683 (C=O), 1100 (C=S). ¹H NMR (DMSO- d_6 /500 MHz): δ 2.31 (s, 3H, 5-CH₃), 3.07 (d, J = 4.39 Hz, 3H, N-CH₃), 3.17 (s, 3H, N-CH₃), 7.00 (d, J = 8.29 Hz, 1H, indole C₆-H), 7.23 (d, J = 7.80 Hz, 1H, indole C₇-H), 7.48 (s, 1H, indole C₄-H), 9.22 (s, 1H, N₄-H), 12.47 (s, 1H, N₂-H). Anal. Calcd for C₁₂H₁₄N₄OS (262.33): C, 54.94; H, 5.38; N, 21.36. Found: C, 54.73; H, 5.07; N, 21.28.

4.4.2. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-(*N*-ethylthiosemicarbazone) (4b)

Yellow powder (80%): mp 250–251 °C; IR(KBr): v 3301 (NH), 1686 (C=O), 1100 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 1.20 (t, J = 7.14 Hz, 3H, ethyl C₂-H), 2.33 (s, 3H, 5-CH₃), 3.20 (s, 3H, N-CH₃), 3.65 (quin., J = 6.61 Hz, 2H, ethyl C₁-H), 7.02 (d, J = 8.00 Hz, 1H, indole C₆-H), 7.25 (dd, J = 7.98, 0.88 Hz, 1H, indole C₇-H), 7.52 (s, 1H, indole C₄-H), 9.31 (t, J = 5.80 Hz, 1H, N₄-H), 12.45 (s, 1H, N₂-H); ¹³C NMR (HSQC-2D, DMSO- $d_6/125$ MHz): δ 14.51 (ethyl C₂), 21.08 (5-CH₃), 26.13 (N-CH₃), 39.36–40.61 (DMSO, ethyl C₁), 110.00 (indole C₆), 119.69 (indole C_{3a}), 121.33 (indole C₄), 131.32 (indole C₅), 131.77 (indole C₇), 132.39 (indole C_{7a}), 141.78 (indole C₃), 161.19 (indole C₂), 177.09 (C=S); LCMS-APCI (+) m/z (%): 277 (MH⁺, 100). Anal. Calcd for C₁₃H₁₆N₄OS (276.35): C, 56.50; H, 5.84; N, 20.27. Found: C, 56.46; H, 5.41; N, 20.48.

4.4.3. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-(*N*-allylthiosemicarbazone) (4c)

Orange powder (67%): mp 208–209 °C; IR(KBr): υ 3266 (NH), 1687 (C=O), 1186 (C=S). ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.31 (s, 3H, 5-CH₃), 3.17 (s, 3H, N-CH₃), 4.24 (td, J = 5.80, 1.47 Hz, 2H, allyl C₁-H), 5.13 (dd, J = 7.32, 1.46 Hz, 1H, allyl C₃-H_{cis}), 5.19 (dd, J = 15.61, 1.46 Hz, 1H, allyl C₃-H_{trans}), 5.89–5.94 (m, 1H, allyl C₂-H), 6.99 (d, J = 7.57 Hz, 1H, indole C₆-H), 7.22 (d, J = 8.29 Hz, 1H, indole C₇-H), 7.50 (s, 1H, indole C₄-H), 9.42 (t, J = 5.80 Hz, 1H, N₄-H), 12.49 (s, 1H, N₂-H). Anal. Calcd for C₁₄H₁₆N₄OS (288.36): C, 58.31; H, 5.59; N, 19.43. Found: C, 58.37; H, 5.42; N, 19.60.

4.4.4. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-(*N*-butylthiosemicarbazone) (4d)

Orange crystals (69%): mp 201–203 °C; IR(KBr): υ 3281 (NH), 1685 (C=O), 1173 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 0.93 (t, J = 7.36 Hz, 3H, butyl C₄-H), 1.34 (hex., J = 7.45 Hz, 2H, butyl C₃-H), 1.61 (pent, J = 7.45 Hz, 2H, butyl C₂-H), 2.34 (s, 3H, 5-CH₃), 3.20 (s, 3H, N-CH₃), 3.61 (q, J = 6.86 Hz, 2 H, butyl C₁-H), 7.04 (d, J = 8.00 Hz, 1H, indole C₆-H), 7.26 (dd, J = 8.04, 0.81 Hz, 1H, indole C₇-H), 7.54 (s, 1H, indole C₄-H), 9.29 (t, J = 5.84 Hz, 1 H, N₄-H), 12.47 (s, 1H, N₂-H); ¹³C NMR (APT, DMSO- $d_6/125$ MHz): δ 14.24

(butyl C_4), 20.06 (butyl C_3), 21.07 (5-CH₃), 26.11 (N-CH₃), 31.02 (butyl C_2), 44.37 (butyl C_1), 109.97 (indole C_6), 119.69 (indole C_{3a}), 121.34 (indole C_4), 131.29 (indole C_5), 131.75 (indole C_7), 132.37 (indole C_{7a}), 141.76 (indole C_3), 161.18 (indole C_2), 177.32 (C=S); LCMS-APCI (+) m/z (%): 305 (MH⁺, 56), 282 (96), 79 (99), 65 (100). Anal. Calcd for $C_{15}H_{20}N_4OS$ (304.41): C, 59.18; H, 6.62; N, 18.41. Found: C, 59.44; H, 6.79; N, 18.70.

4.4.5. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-(*N*-benzylthiosemicarbazone) (4e)

Orange powder (79%): mp 191–192 °C; IR(KBr): v 3287 (NH), 1687 (C=O), 1172 (C=S); 1 H NMR (DMSO/500 MHz): 2.29 (s, 3H, 5-CH₃), 3.16 (s, 3H, N-CH₃), 4.87 (d, J = 5.85 Hz, 2H, benzyl CH₂), 6.96 (d, J = 7.81 Hz, 1H, indole C₆-H), 7.20 (d, J = 8.30 Hz, 1H, indole C₇-H), 7.25 (t, J = 7.32 Hz, 1H, benzyl C₄-H), 7.32–7.37 (m, 4H, benzyl C_{2,3,5,6}-H), 7.47 (s, 1H, indole C₄-H), 9.78 (t, J = 5.86 Hz, 1H, N₄-H), 12.53 (s, 1H, N₂-H). Anal. Calcd for C₁₈H₁₈N₄OS (338.42): C, 63.88; H, 5.36; N, 16.56. Found: C, 63.23; H, 5.48; N, 16.48.

4.4.6. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-[*N*-(4-fluorophenyl) thiosemicarbazone] (4f)

Orange powder (81%): mp 236 °C; IR(KBr): υ 3208 (NH), 1675 (C=O), 1161 (C=S); ¹H NMR (DMSO/400 MHz): 2.34 (s, 3H, 5-CH₃), 3.21 (s, 3H, N-CH₃), 7.05 (d, J = 8.00 Hz, 1H, indole C₆-H), 7.25–7.29 (m, 3H, indole C₇-H and phenyl C_{2,6}-H), 7.59–7.63 (m, 3H, indole C₄-H and phenyl C_{3,5}-H), 10.84 (s, 1H, N₄-H), 12.71 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₅FN₄OS (342.39): C, 59.63; H, 4.42; N, 16.36. Found: C, 59.66; N, 4.36; N, 16.54.

4.4.7. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-[*N*-(2-bromophenyl) thiosemicarbazone] (4g)

Orange powder (85%): mp 231–232 °C; IR(KBr): υ 3234 (NH), 1682 (C=O), 1162 (C=S). ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.32 (s, 3H, 5-CH₃), 3.20 (s, 3H, N-CH₃), 7.04 (d, J = 7.81 Hz, 1H, indole C₆-H), 7.26 (d, J = 7.32 Hz, 1H, indole C₇-H), 7.30 (td, J = 7.81, 1.46 Hz, 1H, phenyl C₄-H), 7.45 (t, J = 7.81 Hz, 1H, phenyl C₅-H), 7.54 (d, J = 7.81 Hz, 1H, phenyl C₃-H), 7.58 (s, 1H, indole C₄-H), 7.74 (d, J = 8.29 Hz, 1H, phenyl C₆-H), 10.80 (s, 1H, N₄-H), 12.73 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₅BrN₄OS.1/2H₂O (412.29): C, 49.52; H, 3.91; N, 13.58. Found: C, 49.62; N, 3.92; N, 14.17.

4.4.8. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-[*N*-(3-bromophenyl) thiosemicarbazone] (4h)

Orange powder (79%): mp 226–229 °C; IR(KBr): v 3304, 3217 (NH), 1682 (C=0), 1173 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 2.34 (s, 3H, $5-CH_3$), 3.21 (s, 3H, $N-CH_3$), 7.06 (d, J = 8.01 Hz, 1H, indole C_6 -H), 7.29 (dd, J = 7.56, 0.84 Hz, 1H, indole C_7 -H), 7.40 (t, J = 8.00 Hz, 1H, phenyl C₅-H), 7.48 (d, J = 7.68 Hz, 1H, phenyl C₆-H), 7.64 (s, 1H, indole C_4 -H), 7.71 (d, J = 7.51 Hz, 1H, phenyl C_4 -H), 7.91 (t, $J = 1.90 \,\text{Hz}$, 1H, phenyl C₂-H), 10.89 (s, 1H, N₄-H), 12.77 (s, 1H, N₂-H); 13 C NMR (HSQC-2D, DMSO- $d_6/125$ MHz): δ 21.09 (5-CH₃), 26.22 (N-CH₃), 110.13 (indole C₆), 119.53 (indole C_{3a}), 121.22 (phenyl C₃), 121.98 (indole C₄), 124.89 (phenyl C₄), 128.31 (phenyl C₂), 129.16 (phenyl C₆), 130.70 (phenyl C₅), 132.25 (indole C₇), 132.42 (indole C₅), 132.53 (indole C_{7a}), 140.48 (phenyl C₁), 142.15 (indole C₃), 161.29 (indole C₂), 176.69 (C=S); LCMS-APCI (+) m/z (%): 403, 405 [(MH⁺, MH⁺+2) 36, 33], 401 (100). Anal. Calcd for C₁₇H₁₅ BrN₄OS (403.29): C, 50.63; H, 3.75; N, 13.89. Found: C, 51.12; H, 3.57; N, 13.95.

4.4.9. 1,5-Dimethyl-1*H*-indole-2,3-dione 3-[*N*-(4-nitrophenyl) thiosemicarbazone] (4i)

Orange powder (66%): mp 255–256 °C; IR(KBr): υ 3285 (NH), 1672 (C=O), 1168 (C=S). ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.33 (s, 3H, 5-CH₃), 3.20 (s, 3H, N-CH₃), 7.04 (d, J = 7.81 Hz, 1H indole C₆-H), 7.28 (d, J = 7.80 Hz, 1H, indole C₇-H), 7.63 (s, 1H, phenyl C₄-

H), 8.07 (d, J = 8.78 Hz, 2H, phenyl C_{2,6}-H), 8.28 (d, J = 8.78 Hz, 2H, phenyl C_{3,5}-H), 11.17 (s, 1H, N₄-H), 12.91 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₅N₅O₃S (369.39): C, 55.27; H, 4.09; N, 18.96. Found: C, 54.66; H, 3.69; N, 18.81.

4.4.10. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-methylthiosemicarbazone) (4j)

Yellow powder (82%): mp 218–20 °C; IR(KBr): υ 3355, 3279 (NH), 1689 (C=O), 1124 (C=S); 1 H NMR (DMSO- d_6 /400 MHz): δ 3.09 (d, J = 4.60 Hz, 3H, NHCH₃), 3.23 (s, 3H, N-CH₃), 7.25 (d, J = 8.50 Hz, 1H, indole C₇-H), 7.46 (dd, J = 8.50, 1.70 Hz, 1H, indole C₆-H), 7.66 (d, J = 1.30 Hz, 1H, indole C₄-H), 9.41 (q, J = 4.50 Hz, 1H, N₄-H), 12.38 (s, 1H, N₂-H); 13 C NMR APT (DMSO- d_6 /125 MHz): δ 26.35 (N-CH₃), 31.81 (NHCH₃), 111.52 (indole C₇), 113.92 (indole C₄), 120.67 (q, J = 255.85, CF₃O), 121.28 (indole C_{3a}), 124.24 (indole C₆), 130.08 (indole C_{7a}), 142.78 (indole C₃), 144.41 (indole C₅), 161.30 (indole C₂), 178.05 (C=S). Anal. Calcd for C₁₂H₁₁F₃N₄O₂S (332.30): C, 43.37; H, 3.34; N, 16.86. Found: C, 44.09; H, 3.00; N, 17.08.

4.4.11. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-ethylthiosemicarbazone) (4k)

Yellow powder (81%): mp 217–219 °C; IR(KBr): υ 3372, 3320 (NH), 1685 (C=O), 1176 (C=S); 1 H NMR (DMSO- $d_6/400$ MHz): δ 1.11 (t, J = 7.1 Hz, 3H, ethyl CH₃), 3.14 (s, 3H, N-CH₃), 3.56 (p, J = 6.20 Hz, 2H, ethyl CH₂), 7.16 (d, J = 8.50 Hz, 1H, indole C₇-H), 7.37 (dd, J = 8.50, 1.70 Hz, 1H, indole C₆-H), 7.60 (d, J = 1.40 Hz, 1H, indole C₄-H), 9.34 (t, J = 5.70 Hz, 1H, N₄-H), 12.27 (s, 1H, N₂-H); LCMS-APCI (- J +) m/z (%): 347 (MH $^+$, 100), 345 (MH $^-$, 100). Anal. Calcd for C₁₃H₁₃F₃N₄O₂S (346.32): C, 45.08; H, 3.78; N, 16.18. Found: C, 45.85; H, 3.72; N, 16.47.

4.4.12. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-allylthiosemicarbazone) (4l)

Yellow crystals (79%): mp 181–182 °C; IR(KBr): υ 3344, 3210 (NH), 1682 (C=O), 1155 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 3.29 (s, 3H, N-CH₃), 4.26 (t, J = 5.86 Hz, 2H, allyl C₁-H), 5.14 (dd, J = 10.25, 1.46 Hz, 1H, allyl C₃-H_{cis}), 5.20 (dd, J = 17.09, 1.46 Hz, 1H, allyl C₃-H_{trans}), 5.88–5.96 (m, 1H, allyl C₂-H), 7.23 (d, J = 8.78 Hz, 1H, indole C₇-H), 7.44 (dd, J = 7.52, 1.95 Hz, 1H, indole C₆-H), 7.70 (s, 1H, indole C₄-H), 9.56 (t, J = 5.85 Hz, 1H, N₄-H), 12.41 (s, 1H, N₂-H). Anal. Calcd for C₁₄H₁₃F₃N₄O₂S (358.33): C, 46.92; H, 3.66; N, 15.64. Found: C, 46.71; H, 3.77; N, 15.61.

4.4.13. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-butylthiosemicarbazone) (4m)

Yellow powder (76%): mp 179 °C; IR(KBr): v 3364, 3336 (NH), 1685 (C=O), 1168 (C=S); 1 H NMR (DMSO- $d_6/400$ MHz): δ 0.93 (t, J = 7.30 Hz, 3H, butyl CH₃), 1.32–1.38 (m, 2H, butyl C₃-H₂), 1.63 (p, J = 7.40 Hz, 2H, butyl C₂-H₂), 3.23 (s, 1H, N-CH₃), 3.61 (q, J = 6.90 Hz, 2H, butyl C₁-H₂), 7.18 (d, J = 8.50 Hz, 1H, indole C₇-H), 7.39 (dd, J = 8.50, 1.60 Hz, 1H, indole C₆-H), 7.65 (d, J = 1.60 Hz, 1H, indole C₄-H), 9.34 (t, J = 5.90 Hz, 1H, N₄-H), 12.31 (s, 1H, N₂-H); 13 C NMR (HETCOR-2D, DMSO- $d_6/125$ MHz): δ 14.16 (CH₃), 20.07 (butyl C₃), 26.23 (N-CH₃), 30.96 (butyl C₂), 44.43 (butyl C₁), 111.27 (indole C₇), 114.09 (indole C₄), 120.66 (q, J = 255.70, CF₃O), 121.19 (indole C_{3a}), 124.05 (indole C₆), 129.88 (indole C_{7a}), 142.59 (indole C₃), 144.41 (indole C₅), 161.16 (indole C₂), 177.29 (C=S). Anal. Calcd for C₁₅H₁₇F₃N₄O₂S (374.38): C, 48.12; H, 4.58; N, 14.97. Found: C, 48.37; H, 4.50; N, 15.03.

4.4.14. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-cyclohexylthiosemicarbazone) (4n)

Yellow powder (78%): mp 228–229 °C; IR(KBr): υ 3364, 3319 (NH), 1684 (C=O), 1167 (C=S); ¹H NMR (DMSO- d_6 /400 MHz): δ 1.29–1.94 (m, 10H, cyclohexyl C_{2,3,4,5,6}-H), 3.23 (s, 3H, N-CH₃),

4.09–4.32 (m, 1H, cyclohexyl C_1 -H), 7.25 (d, J = 8.60 Hz, 1H, indole C_7 -H), 7.45, 7.48 (2xdd, J = 8.50, 2.30 Hz, 1H, indole C_6 -H), 7.79 (d, J = 2.10 Hz, 1H, indole C_4 -H), 8.93 (d, J = 8.50 Hz, 1H, N_4 -H), 12.43 (s, 1H, N_2 -H); LCMS-APCI (+) m/z (%): 401 (MH $^+$, 100). Anal. Calcd for $C_{17}H_{19}F_3N_4O_2S$ (400.41): C, 50.99; H, 4.78; N, 13.99. Found: C, 51.41; H, 4.85; N, 14.05.

4.4.15. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-benzylthiosemicarbazone) (40)

Yellow powder (79%): mp 200–201 °C; IR(KBr): υ 3349, 3211 (NH), 1685 (C=O), 1167 (C=S); 1 H NMR (DMSO- d_6 /500 MHz): δ 3.22 (s, 3H, N-CH₃), 4.89 (d, J = 6.35 Hz, 2H, benzyl CH₂), 7.23 (d, J = 8.30 Hz, 1H, indol C₇-H), 7.25–7.27 (m, 1H, benzyl C₄-H), 7.32–7.34 (m, 4H, benzyl C_{2,3,5,6}-H), 7.44 (dd, J = 8.78, 1.95 Hz, 1H, indole C₆-H), 7.67 (d, J = 1.95 Hz, 1H, indole C₄-H), 9.92 (t, J = 6.34 Hz, 1H, N₄-H), 12.47 (s, 1H, N₂-H). Anal. Calcd for C₁₈H₁₅F₃N₄O₂S (408.39): C, 52.94; H, 3.70; N, 13.72. Found: C, 52.82; H, 3.66; N, 13.65.

4.4.16. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-(*N*-phenylthiosemicarbazone) (4p)

Orange powder (75%): mp 203–205 °C; IR(KBr): υ 3322, 3226 (NH), 1686 (C=O), 1157 (C=S); 1 H NMR (DMSO- d_6 /500 MHz): δ 3.23 (s, 3H, N-CH₃), 7.23 (d, 1H, indol C₇-H), 7.29 (t, J = 7.32 Hz, 1H, phenyl C₄-H), 7.43 (t, 3H, phenyl C_{3,5}-H, indole C₆-H), 7.58 (d, J = 7.80 Hz, 1H, phenyl C_{2,6}-H), 7.81 (s, 1H, indole C₄-H), 10.88 (s, 1H, N₄-H), 12.56 (s, 1H, N₂-H); 13 C NMR (HSQC-2D, DMSO- d_6 /125MHz): δ 26.61 (N-CH₃), 111.71 (indole C₇), 114.00 (indole C₄), 119.89 (OCF₃), 121.42 (indole C_{3a}), 124.67 (indole C₆), 126.51 (phenyl C_{2,6}), 127.04 (phenyl C₄), 129.19 (phenyl C_{3,5}), 130.96 (indole C_{7a}), 138.97 (phenyl C₁), 143.20 (indole C₃), 144.75 (indole C₅), 161.59 (indole C₂), 177.11 (C=S); LCMS-APCI (-) m/z (%): 393 (MH⁻, 100). Anal. Calcd for C₁₇H₁₃F₃N₄O₂S (394.37): C, 51.77; H, 3.32; N, 14.21. Found: C, 51.84; H, 3.08; N, 14.32.

4.4.17. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-methylphenyl)thiosemicarbazonel (4g)

Orange crystals (74%): mp 216–217 °C; IR(KBr): v 3322, 3232 (NH), 1686 (C=O), 1149 (C=S); 1 H NMR (DMSO- d_{6} /400 MHz): δ 2.34 (s, 3H, CH₃), 3.26 (s, 3H, N-CH₃), 7.24–7.48 (m, 6H, indole C₇-H, C₆-H, C₆H₄), 7.85 (d, J = 1.20 Hz, 1H, indol C₄-H), 10.87 (s, 1H, N₄-H), 12.57 (s, 1H, N₂-H). Anal. Calcd for C₁₈H₁₅F₃N₄O₂S (408.39): C, 52.94; H, 3.70; N, 13.72. Found: C, 53.00; H, 3.67; N, 13.86

4.4.18. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-fluorophenyl) thiosemicarbazone] (4r)

Yellow powder (77%): mp 214–215 °C; IR(KBr): υ 3314, 3250 (NH), 1687 (C=O), 1151 (C=S).); ¹H NMR (DMSO- $d_6/500$ MHz): δ 3.24 (s, 3H, N-CH₃), 7.25 (d, J = 8.79 Hz, 1H, indole C₇-H), 7.26 (t, 2H, J = 8.78 Hz, phenyl C_{3,5}-H), 7.46 (d, J = 8.05 Hz, 1H, indole C₆-H), 7.58 (dd, 2H, J = 8.78, 1.95 Hz, phenyl C_{2,6}-H), 7.80 (s, 1H, indole C₄-H), 10.89 (s, 1H, N₄-H), 12.58 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₂F₄N₄O₂S (412.36): C, 49.52; H, 2.93; N, 13.59. Found: C, 49.36; H, 2.85; N, 13.61.

4.4.19. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-chlorophenyl) thiosemicarbazone] (4s)

Yellow powder (89%): mp 221–222 °C; IR(KBr): v 3353, 3200 (NH), 1678 (C=O), 1168 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 3.26 (s, 3H, N-CH₃), 7.28 (d, J = 8.60 Hz, 1H, indol C₇-H), 7.49–7.53 (m, 3H, indol C₆-H, phenyl C_{3.5}-H), 7.66 (d, J = 8.70 Hz, 2H, phenyl C_{2.6}-H), 7.83 (d, J = 1.50 Hz, 1H, indol C₄-H), 10.95 (s, 1H, N₄-H), 12.64 (s, 1H, N₂-H); ¹³C NMR (APT, DMSO- $d_6/125$ MHz): δ 26.62 (N-CH₃), 111.77 (indole C₇), 114.89 (indole C₄), 121.33 (OCF₃), 121.92 (indole C_{3a}), 124.80 (indole C₆), 128.11 (phenyl

 $C_{2,6}),\ 129.96\ (phenyl\ C_{3,5}),\ 131.06\ (phenyl\ C_4),\ 131.24\ (indole\ C_{7a}),\ 137.94\ (phenyl\ C_1),\ 143.28\ (indole\ C_3),\ 144.74\ (indole\ C_5),\ 161.59\ (indole\ C_2),\ 177.15\ (C=S);\ LCMS-APCI\ (-/+)\ m/z\ (\%):\ 429\ (MH^+,\ 26),\ 79\ (100),\ 427\ (MH^-,\ 100).\ Anal.\ Calcd\ for\ C_{17}H_{12}ClF_3N_4O_2S.½\ H_2O\ (437.82):\ C,\ 46.63;\ H,\ 2.99;\ N,\ 12.79.\ Found:\ C,\ 46.68;\ H,\ 2.76;\ N,\ 13.16.$

4.4.20. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-bromophenyl) thiosemicarbazone] (4t)

Yellow powder (77%): mp 223 °C; IR(KBr): v 3317, 3230 (NH), 1685 (C=O), 1150 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 3.23 (s, 3H, N-CH₃), 7.23 (d, J = 8.79 Hz, 1H, indole C₇-H), 7.45 (d, J = 7.81 Hz, 1H, indole C₆-H), 7.60 (q, J = 8.78 Hz, 4H, phenyl C_{3,4,5,6}-H), 7.79 (s, 1H, indole C₄-H), 10.89 (s, 1H, N₄-H), 12.61 (s, 1H, N₂-H). Anal. Calcd for C₁₇H₁₂BrF₃N₄O₂S (473.26): C, 43.14; H, 2.56; N, 11.84. Found: C, 42.69; H, 2.36; N, 11.78.

4.4.21. 1-Methyl-5-trifluoromethoxy-1*H*-indole-2,3-dione 3-[*N*-(4-nitrophenyl) thiosemicarbazone] (4y)

Yellow powder (94%): mp 249 °C; IR(KBr): v 3335, 3290 (NH), 1679 (C=O), 1163 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 3.24 (s, 3H, N-CH₃), 7.26 (d, J = 8.30 Hz, 1H, indole C_7 -H), 7.48 (dd, J = 8.54, 1.46 Hz, 1H, indole C_6 -H), 7.81 (d, J = 1.47 Hz, 1H, indole C_4 -H), 8.06 (dd, J = 6.83, 1.95 Hz, 2H, phenyl $C_{2,6}$ -H), 8.29 (dd, J = 7.32, 1.95 Hz, 2H, phenyl $C_{3,5}$ -H), 11.14 (s, 1H, N₄-H), 12.78 (s, 1H, N₂-H). Anal. Calcd for C_{17} H₁₂F₃N₅O₄S (439.36): C, 46.47; H, 2.75; N, 15.94. Found: C, 46.17; H, 2.70; N, 16.75.

4.5. General method for the synthesis of 5-trifluoromethoxy-1-morpholinomethyl-1*H*-indole-2,3-dione 3-thiosemicarbazones (5a-m)

To a suspension of **3h-t** (2 mmol) in absolute ethanol (20 mL), 37% formaldehyde solution (0.5 mL) and morpholine (2 mmol) were added dropwise with vigorous stirring. After combining all reagents, the reaction mixture was stirred at room temperature for 10 h. The solid product was filtered and washed with petroleum ether

4.5.1. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-methylthiosemicarbazone) (5a)

Yellow powder (82%): mp 201–202 °C; IR (KBr): υ 3305, 3239 (NH), 1694 (C=O), 1155 (C=S); ^1H NMR (DMSO/ d_6 , 400 MHz): δ 2.56 (br t, J = 4.00 Hz, 4H, morph. C_{3,5}-H), 3.10 (d, J = 4.57 Hz, 3H, CH₃), 3.54 (br t, J = 4.30 Hz, 4H, morph. C_{2,6}-H), 4.51 (s, 2H, N-CH₂-N), 7.38 (d, J = 8.60 Hz, 1H, indole C₇-H), 7.44 (dd, J = 8.60, 1.80 Hz, 1H, indole C₆-H), 7.69 (d, J = 1.20 Hz, 1H, indole C₄-H), 9.43 (q, J = 4.50 Hz, 1H, N₄-H), 12.37 (s, 1H, N₂-H); ^{13}C NMR (APT, DMSO/ d_6 , 125 MHz): δ 31.78 (NHCH₃), 50.93 (morph. C_{3,5}), 61.89 (morph. C_{2,6}), 66.44 (N-CH₂-N), 112.77 (indole C₇), 113.83 (indole C₄), 121.37 (indole C_{3a}), 121.93 (q, J = 256.10, CF₃O), 124.04 (indole C₆), 129.77 (indole C_{7a}), 142.56 (indole C₃), 144.50 (indole C₅), 162.06 (indole C₂), 178.00 (C=S). Anal. Calcd for C₁₆H₁₈F₃N₅O₃S (417.40): C, 46.04; H, 4.35; N, 16.78. Found: C, 45.81; H, 4.41; N, 16.74.

4.5.2. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-ethylthiosemicarbazone) (5b)

Yellow powder (78%): mp 205–207 °C; IR (KBr): ν 3260 (NH), 1695 (C=O), 1165 (C=S); ¹H NMR (DMSO/ d_6 , 400 MHz): δ 1.11 (t, J = 7.10 Hz, 3H, ethyl CH₃), 2.47 (br t, J = 4.30 Hz, 4H, morph. C_{3,5}-H), 3.45 (br t, J = 4.40 Hz, 4H, morph. C_{2,6}-H), 3.56 (p, J = 6.20 Hz, 2H, ethyl CH₂), 4.41 (s, 2H, N-CH₂-N), 7.28 (d, J = 8.60 Hz, 1H, indole C₇-H), 7.35 (dd, J = 8.60, 1.80 Hz, 1H, indole C₆-H), 7.62 (d, J = 1.40 Hz, 1H, indole C₄-H), 9.35 (t, J = 5.80 Hz, 1H, N₄-H), 12.25 (s, 1H, N₂-H); LCMS-APCI (-/+): m/z (%) 432 (MH⁺, 14), 333 (100), 265 (99), 430 (MH⁻, 8), 265 (100). Anal. Calcd for C₁₇H₂₀F₃N₅O₃S

(431.43): C, 47.33; H, 4.67; N, 16.23. Found: C, 47.48; H, 4.35; N, 16.27.

4.5.3. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-allylthiosemicarbazone) (5c)

Dark yellow powder (84%): mp 153 °C; IR (KBr): υ 3250 (NH), 1694 (C=O), 1162 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 2.55 (t, J = 4.27 Hz, 4H, morph. $C_{3,5}$ -H), 3.53 (t, J = 4.42 Hz, 4H, morph. $C_{2,6}$ -H), 4.26 (t, J = 5.64 Hz, 2H, allyl C_{1} -H), 4.49 (s, 2H, N-CH₂-N), 5.15 (dd, J = 10.07, 1.52 Hz, 1H, allyl C_{3} -H_{cis}), 5.20 (dd, J = 17.38, 1.52 Hz, 1H, allyl C_{3} -H_{trans}), 5.87–5.95 (m, 1H, allyl C_{2} -H), 7.36 (d, J = 8.54 Hz, 1H, indole C_{7} -H), 7.42 (dd, J = 8.54, 1.83 Hz, 1H, indole C_{6} -H), 7.72 (d, J = 1.52 Hz, 1H, indole C_{4} -H), 9.59 (t, J = 5.95 Hz, 1H, V_{4} -H), 12.38 (s, 1H, V_{2} -H). Anal. Calcd for V_{18} H₂₀F₃ V_{5} O₃S· V_{2} H₂O (452.45): V_{5} C, 47.78; H, 4.67; N, 15.47. Found: V_{5} C, 48.20; H, 5.05; N, 15.49.

4.5.4. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-butylthiosemicarbazone) (5d)

Yellow powder (78%): mp 129–132 °C; IR (KBr): υ 3302 (NH), 1692 (C=O), 1162 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 0.93 (t, I = 7.30 Hz, 3H, butyl C₄-H), 1.32–1.39 (m, 2H, butyl C₃-H), 1.63 (p, I = 7.40 Hz, 2H, butyl C₂-H), 2.56 (t, I = 3.80 Hz, 4H, morph. $C_{3.5}$ -H), 3.54 (t, I = 4.20 Hz, 4H, morph, $C_{2.6}$ -H), 3.63 (q, J = 6.80 Hz, 2H, butyl C₁-H), 4.50 (s, 2H, N-CH₂-N), 7.37 (d, J = 8.60, Hz, 1H, indole C₇-H), 7.42 (dd, J = 8.60, 1.80 Hz, 1H, indole C_6 -H), 7.72 (d, J = 1.60 Hz, 1H, indole C_4 -H), 9.42 (t, J = 5.90 Hz, 1H, N_4 -H), 12.34 (s, 1H, N_2 -H); ¹³C NMR (HETCOR-2D, DMSO/ d_6 , 100 MHz): 14.19 (butyl C₄), 20.05 (butyl C₃), 30.97 (butyl C₂), 44.43 (butyl C₁), 50.93 (morph. C_{3.5}), 61.86 (morph. C_{2.6}), 66.44 (N-CH₂-N), 112.79 (indole C₇), 114.06 (indole C₄), 120.67 (q, J = 258.10, CF₃O), 121.39 (indole C_{3a}), 124.08 (indole C₆), 129.90 (indole C_{7a}), 142.63 (indole C₃), 144.48 (indole C₅), 162.10 (indole C_2), 177.28 (C=S). Anal. Calcd for $C_{19}H_{24}F_3N_5O_3S$ (459.48): C, 49.66; H, 5.26; N, 15.24. Found: C, 49.44; H, 5.08; N, 15.01.

4.5.5. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-cyclohexylthiosemicarbazone) (5e)

Orange crystals (93%): mp 178–180 °C; IR (KBr): υ 3281 (NH), 1696 (C=O), 1160 (C=S); ¹H NMR (DMSO- $d_6/400$ MHz): δ 1.03–1.86 (m, 10H, cycl. $C_{2,3,4,5,6}$ -H), 2.46 (br t, J = 4.30 Hz, morph. $C_{3,5}$ -H), 3.45 (br t, J = 4.40 Hz, 4H, morph. $C_{2,6}$ -H), 4.10–4.13 (m, 1H, cycl. C_1 -H), 4.41 (s, 2H, N–CH₂–N), 7.28 (d, J = 8.60 Hz, 1H, indole C_7 -H), 7.36 (dd, J = 8.70, 1.5 Hz, 1H, indole C_6 -H), 7.72 (d, J = 2.10 Hz, 1H, indole C_4 -H), 8.86 (d, J = 8.40 Hz, 1 H, N₄-H), 12.29 (s, 1H, N₂-H); LCMS-APCI (-/+): m/z (%) 486 (MH $^+$, 1), 387 (100), 484 (MH $^-$, 5), 420 (100). Anal. Calcd for C_2 1H₂₆F₃N₅O₃S· $\frac{1}{2}$ H₂O (494.53): C_7 C 51.00; H, 5.50; N, 14.16. Found: C_7 C, 50.65; H, 5.57; N, 14.00.

4.5.6. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-benzylthiosemicarbazone) (5f)

Yellow powder (91%): mp 168–169 °C; IR (KBr): ν 3270 (NH), 1694 (C=O), 1153 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.55 (t, J = 4.27 Hz, 4H, morph. $C_{3,5}$ -H), 3.53 (t, J = 4.27 Hz, 4H, morph. $C_{2,6}$ -H), 4.49 (s, 2H, N-CH₂-N), 4.89 (d, J = 6.10 Hz, 2H, benzyl CH₂), 7.25 (t, J = 6.41 Hz, 1H, benzyl C_4 -H), 7.32–7.36 (m, 5H, indole C_7 -H, benzyl $C_{2,3,5,6}$ -H), 7.42 (dd, J = 8.84, 1.83 Hz, 1H, indole C_6 -H), 7.69 (br s, 1H, indole C_4 -H), 9.95 (t, J = 6.25 Hz, 1H, N_4 -H), 12.44 (s, 1H, N_2 -H). Anal. Calcd for C_{22} H₂₂F₃ N_5 O₃S (493.50): C_7 C, 53.54; H, 4.49; N, 14.19. Found: C_7 C, 53.79; H, 4.30; N, 14.31.

4.5.7. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-(*N*-phenylthiosemicarbazone) (5g)

Yellow powder (68%): mp 182–183 °C; IR (KBr): v 3227 (NH), 1697 (C=O), 1159 (C=S); ¹H NMR (DMSO- d_6 /500 MHz): δ 2.57 (t, J = 4.27 Hz, 4H, morph. C_{3/5}-H), 3.54 (t, J = 4.27 Hz, 4H, morph.

C_{2.6}-H), 4.51 (s, 2H, N–CH₂–N), 7.29 (t, J = 7.32 Hz, 1H, phenyl C₄-H), 7.37 (d, J = 8.55 Hz, 1H, indole C₇-H), 7.43 (d, J = 8.23 Hz, 1H, indole C₆-H), 7.44 (d, J = 7.63 Hz, 2H, phenyl C_{3.5}-H), 7.58 (d, J = 7.62 Hz, 2H, phenyl C₂, ₆-H), 7.85 (br s, 1H, indole C₄-H), 10.91 (s, 1H, N₄-H), 12.55 (s, 1H, N₂-H). Anal. Calcd for C₂₀H₂₀F₃N₅O₃S·½-H₂O (488.48): C, 51.63; H, 4.33; N, 14.33. Found: C, 51.73; H, 4.25; N, 14.54.

4.5.8. 5-Trifluoromethoxy-1-(morpholin-1-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-methylphenyl) thiosemicarbazone) (5h)

Dark yellow crystals (71%): mp 169°C; IR (KBr): v 3303, 3231 (NH), 1697 (C=0), 1156 (C=S); 1 H NMR (DMSO- $d_{6}/400$ MHz): δ 2.34 (s, 3H, CH₃), 2.59 (br t, J = 4.20 Hz, 4H, morph. C_{3.5}-H), 3.56 (br t, $J = 4.30 \,\text{Hz}$, 4H, morph. $C_{2.6}$ -H), 4.53 (s, 2H, N-CH₂-N), 7.25 (d, J = 8.30 Hz, 2H, phenyl $C_{3,5}$ -H), 7.40 (d, J = 8.60 Hz, 1H, indole C_7 -H), 7.46 (d, I = 8.30 Hz, 1 H, indole C_6 -H, phenyl $C_{2.6}$ -H), 7.87 (br s, 1H, indole C_{4} -H), 10.88 (s, 1H, N_{4} -H), 12.54 (s, 1H, N₂-H); ¹³C NMR (APT DMSO- $d_6/125$ MHz): δ 21.32 (CH₃), 51.20 (morph. C₃, C₅), 62.19 (N-CH₂-N), 66.69 (morph. C₂, C₆), 113.10 (indole C₇), 114.77 (indole C₄), 120.91 (q, I = 255.93 Hz, CF₃O), 121.59 (indole C_{3a}), 124.53 (indole C₆), 126.38 (phenyl C₃, C₅), 129.63 (phenyl C₂, C₆),130.69 (indole C_{7a}), 136.35 (phenyl C_4), 136.41 (phenyl C_1), 143.08 (indole C_3), 144.79 (indole C₅), 162.43 (indole C₂), 177.06 (C=S); LCMS-APCI (+): m/z (%) 494 (MH⁺, 2), 439 (100). Anal. Calcd for C₂₂H₂₂F₃N₅O₃S (493.50): C, 53.54; H, 4.49; N, 14.19. Found: C, 53.88; H, 4.36; N, 14.19.

4.5.9. 5-Trifluoromethoxy-1-(morpholin-1-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-methoxyphenyl) thiosemicarbazone)

Orange powder (90%): mp 171–173 °C; IR (KBr): υ 3316, 3210 (NH), 1689 (C=O), 1154 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.57 (t, J = 4.39 Hz, 4H, morph. $C_{3,5}$ -H), 3.54 (t, J = 4.39 Hz, 4H, morph. $C_{2,6}$ -H), 3.77 (s, 3H, OCH₃), 4.51 (s, 2H, N-CH₂-N), 6.98 (d, J = 8.79 Hz, 2H, phenyl $C_{3,5}$ -H), 7.37 (d, J = 8.30 Hz, 1H, indole C_7 -H), 7.42–7.45 (m, 3H, indole C_6 -H, phenyl $C_{2,6}$ -H), 7.84 (br s, 1H, indole C_4 -H), 10.83 (s, 1H, N₄-H), 12.51 (s, 1H, N₂-H). Anal. Calcd for C_{22} H₂₂ F_3 N₅O₄S (509.50): C, 51.86; H, 4.35; N, 13.75. Found: C, 51.92; H, 4.04; N, 13.78.

4.5.10. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-fluorophenyl) thiosemicarbazone) (5j)

Orange powder (76%): mp 162–163 °C; IR (KBr): υ 3289, 3215 (NH), 1703 (C=O), 1110 (C=S); 1 H NMR (DMSO- $d_{6}/500$ MHz): δ 2.57 (t, J = 4.27 Hz, 4H, morph. $C_{3,5}$ -H), 3.54 (t, J = 4.27 Hz, 4H, morph. $C_{2,6}$ -H), 4.51 (s, 2H, N–CH $_{2}$ -N), 7.27 (t, J = 8.84 Hz, 2H, phenyl $C_{3,5}$ -H), 7.38 (d, J = 8.55 Hz, 1H, indole C_{7} -H), 7.44 (dd, J = 8.54, 2.13 Hz, 1H, indole C_{6} -H), 7.58 (dd, J = 8.85, 4.88 Hz, 2H, phenyl $C_{2,6}$ -H), 7.82 (br s, indole C_{4} -H), 10.91 (s, 1H, N $_{4}$ -H), 12.56 (s, 1H, N $_{2}$ -H). Anal. Calcd for C_{21} H $_{19}$ F $_{4}$ N $_{5}$ O $_{3}$ S (497.46): C_{5} C, 50.70; H, 3.85; N, 14.08. Found: C_{5} C, 50.66; H, 3.53; N, 13.82.

4.5.11. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-chlorophenyl) thiosemicarbazone) (5k)

Yellow powder (75%): mp 180–182 °C; IR (KBr): υ 3305, 3214 (NH), 1698 (C=O), 1164 (C=S); ¹H NMR (DMSO- d_6 /400 MHz): δ 2.59 (br t, J = 4.20 Hz, 4H, morph. $C_{3,5}$ -H), 3.56 (br t, J = 4.30 Hz, 4H, morph. $C_{2,6}$ -H), 4.53 (s, 2H, N–CH₂–N), 7.40 (d, J = 8.60 Hz, 1H, indole C_7 -H), 7.48 (dd, J = 8.80, 1.50 Hz, 1H, indole C_6 -H), 7.51 (d, J = 8.70 Hz, 2H, phenyl $C_{3,5}$ -H), 7.66 (d, J = 8.70 Hz, 2H, phenyl $C_{2,6}$ -H), 7.85 (d, J = 1.50 Hz, indole C_4 -H), 10.97 (s, 1H, N₄-H), 12.61 (s, 1H, N₂-H); LCMS-APCI (–): m/z (%) 512 (MH $^-$, 2), 413, 415 (100, 37). Anal. Calcd for C_{21} H₁₉ClF₃N₅O₃S

(513.92): C, 49.08; H, 3.73; N, 13.63. Found: C, 49.12; H, 3.43; N, 13.67.

4.5.12. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-bromophenyl) thiosemicarbazone) (51)

Yellow powder (91%): mp 180°C; IR (KBr): υ 3307, 3217 (NH), 1699 (C=O), 1158 (C=S); ¹H NMR (DMSO- $d_6/500$ MHz): δ 2.57 (t, J = 4.39 Hz, 4H, morph. $C_{3,5}$ -H), 3.54 (t, J = 4.39 Hz, 4H, morph. $C_{2,6}$ -H), 4.51 (s, 2H, N-CH₂-N), 7.37 (d, J = 8.78 Hz, 1H, indole C_{7} -H), 7.44 (dd, J = 8.78, 1.47 Hz, 1H, indole C₆-H), 7.58 (d, J = 8.78 Hz, 2H, phenyl C_{3,5}-H), 7.62 (d, J = 8.78 Hz, 2H, phenyl $C_{2,6}$ -H), 7.83 (d, J = 1.46 Hz, indole C_4 -H), 10.92 (s, 1H, N_4 -H), 12.60 (s, 1H, N₂-H); $^{13}\mathrm{C}$ NMR (HSQC-2D, DMSO- $d_6/125$ MHz): δ 51.19 (morph. C₃, C₅), 62.22 (N-CH₂-N), 66.69 (morph. C₂, C₆), 113.18 (indole C₇), 114.80 (indole C₄), 119.37 (phenyl C₄), 120.90 $(q, J = 255.93 \text{ Hz}, CF_3O)$, 121.48 (indole C_{3a}), 124.72 (indole C_6), 128.42 (phenyl C₃, C₅), 131.16 (indole C_{7a}), 132.05 (phenyl C₂, C_6), 138.38 (phenyl C_1), 143.20 (indole C_3), 144.79 (indole C_5), 162.44 (indole C₂), 177.07 (C=S). LCMS-APCI (-): m/z (%) 556, 558 [(MH⁻,MH⁻+2) 85, 100]. Anal. Calcd for C₂₁H₁₉BrF₃N₅O₃S (558.37): C, 45.17; H, 3.43; N, 12.54. Found: C, 45.10; H, 3.30; N, 12.98.

4.5.13. 5-Trifluoromethoxy-1-(morpholin-4-ylmethyl)-1*H*-indole-2,3-dione 3-[*N*-(4-nitrophenyl) thiosemicarbazone) (5m)

Dark yellow powder (73%): mp 169–171 °C; IR (KBr): v 3238 (NH), 1701 (C=O), 1154 (C=S); 1 H NMR (DMSO- d_6 /500 MHz): δ 2.58 (t, J = 4.27 Hz, 4H, morph. $C_{3,5}$ -H), 3.54 (t, J = 4.57 Hz, 4H, morph. $C_{2,6}$ -H), 4.52 (s, 2H, N–CH₂–N), 7.39 (d, J = 8.85 Hz, 1H, indole C_7 -H), 7.47 (dd, J = 8.84, 1.52 Hz, 1H, indole C_6 -H), 7.84 (d, J = 1.53 Hz, 1H, indole C_4 -H), 8.21 (d, J = 9.15 Hz, 2H, phenyl $C_{2,6}$ -H), 8.30 (d, J = 9.15 Hz, 2H, phenyl $C_{3,5}$ -H), 11.15 (s, 1H, N₄-H), 12.76 (s, 1H, N₂-H). Anal. Calcd for C_{21} H₁₉F₃N₆O₅S (524.47): C, 48.09; H, 3.65; N, 16.02. Found: C, 48.08; H, 3.32; N, 15.74.

4.6. In vitro evaluation of antituberculosis activity

The primary screen was conducted against Mycobacterium tuberculosis H37Rv (ATCC 27294) in BACTEC 12B medium using a broth microdilution assay, the Microplate Alamar Blue Assay (MABA).²² Compounds were tested in 10 twofold dilutions, usually from 100 µg/mL to 0.19 µg/mL. Compounds demonstrating a percent inhibition of bacterial growth of greater than or equal to 90% in the primary screen were retested against M. tuberculosis H37Rv to determine the actual minimum inhibitory concentration (MIC) in the MABA. The MIC was defined as the lowest concentration effecting a reduction in fluorescence of 90% relative to controls. This value was determined from the dose-response curve as the IC₉₀ using a curve fitting program. Any IC₉₀ value of $\leq 10 \,\mu g/mL$ was considered "Active" for antitubercular activity. Compounds active in the initial screen were tested for cytotoxicity in VERO cells. After 72 h exposure, viability was assessed using the CellTiter 96® Non-Radioactive Cell Proliferation Assay (MTT) reagent from Promega. Cytotoxicity was determined from the dose-response curve as the IC_{50} using a curve fitting program. Concurrent with the determination of MICs, compounds were tested for IC50 in VERO cells at concentrations 10x the MIC for *M. tuberculosis* H37Rv.

4.6.1. Microplate Alamar Blue Assay (MABA)

Antimicrobial susceptibility testing was performed in black, clear-bottomed, 96-well microplates (black view plates; Packard Instrument Company, Meriden, Conn.) in order to minimize background fluorescence. Outer perimeter wells were filled with sterile water to prevent dehydration in experimental wells. Initial drug dilutions were prepared in either dimethyl sulfoxide or distilled

deionized water, and subsequent twofold dilutions were performed in 0.1 mL of 7H9GC (no Tween 80) in the microplates. BAC-TEC 12B-passaged inocula were initially diluted 1:2 in 7H9GC, and 0.1 mL was added to wells. The determination of bacterial titer yielded 1×10^6 CFU/mL in plate well for H₃₇Rv. Frozen inocula were initially diluted 1:20 in BACTEC 12B medium followed by a 1:50 dilution in 7H9GC. Addition of 1/10 mL to wells resulted in final bacterial titer of 20×10^5 CFU/mL for H₃₇Rv. Wells containing drug only were used to detect autofluorescence of compounds. Additional control wells consisted of bacteria only (B) and medium only (M). Plates were incubated at 37 °C. Starting at day 4 of incubation, 20 μL of 10 imes alamarBlue solution (Alamar Biosciences/Accumed, Westlake, Ohio) and 12.5 µL of 20% Tween 80 were added to one B well and one M well, and plates were reincubated at 37 °C. Wells were observed 12 and 24 h later for a color change from blue to pink and for a reading of $\geq 50,000$ fluorescence units (FU). Fluorescence was measured in a Cytofluor II microplate fluorometer (PerSeptive Biosystems, Framingham, Mass.) in bottom-reading mode with excitation at 530 nm and emission at 590 nm. If the B wells become pink after 24 h, the reagent is being added to the entire plate. If the well-remain blue or ≥50,000 FU is measured, additional M and B wells are tested daily until a color change occurred, at which time reagents are added to all remaining wells. Plates were then incubated at 37 °C, and results were recorded at 24 h post-reagent addition. Visual MICs were defined as the lowest concentration of drug that prevented a color change. For fluorometric MICs, a background subtraction was performed on all wells with a mean of triplicate M wells. Percent inhibition was defined as $(1 - (\text{test well FU/mean FU of triplicate B wells}) \times 100)$. The lowest drug concentration effecting an inhibition of \geqslant 90% was considered the MIC.

4.6.2. BACTEC radiometric assay

A total of 1/10 ml of BACTEC 12B-passaged inoculum was delivered without prior dilution into 4 mL of test medium. The determination of bacterial titer yielded average titer of 1×10^5 CFU/ml of BACTEC 12B medium for H₃₇Rv. Frozen inocula were initially diluted 1:20 in BACTEC 12B medium, and then 0.1 mL was delivered to the test medium. This yielded 5.0×10^5 CFU per BACTEC vial for H₃₇Rv. Twofold drug dilutions were prepared in either dimethyl sulfoxide (DMSO) or distilled deionized water and delivered via a 0.5-mL insulin syringe in a 50-µL volume. Drug-free control vials consisted of solvent with bacterial inoculum and solvent with a 1:100 dilution of bacterial inoculum (1:100 controls). Vials were incubated at 37 °C, and the GI was determined in a BACTEC 460 instrument (Becton-Dickinson) until the GI of the 1:100 controls reached at least 30. All vials were read the following day, and the GI and daily change in GI (Δ GI) were recorded for each drug dilution. The MIC was defined as the lowest concentration for which the ΔGI was less than the ΔGI of the 1:100 control. If the GI of the test sample was greater than 100, the sample was scored as resistant even if the ΔGI was less than the ΔGI of the 1:100 control.

Acknowledgments

We thank Dr. Joseph A. Maddry from the Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), National Institute of Allergy and Infectious Diseases Southern Research Institute, Alabama, USA for the evaluation of anti-TB activity.

This work was supported by Istanbul University Research Fund, Project Nos.: 167/15012004 and BYP-809/07112005.

References and notes

- 1. Dye, C. Lancet 2006, 367, 938.
- 2. Raviglione, M. Int. J. Tuberc. Lung Dis. 2006, 10, 1185.

- 3. Pablos-Mendez, A.; Raviglione, M. C.; Laszlo, A.; Binkin, N.; Rieder, H. L.; Bustreo, F.; Cohn, D. L.; Lambregts-van Weezenbeek, C. S.; Kim, S. J.; Cahulet, P.; Nunn, P. N. Eng. J. Med. 1998, 338, 1641.
- 4. Houston, S.; Fanning, A. Drugs 1994, 48, 689.
- Domagk, G.; Behnisch, R.; Mietsch, F.; Schmidt, H. Naturwissenschaften 1946, 10, 315.
- Bermudez, L. E.; Reynolds, R.; Kolonoski, P.; Aralar, P.; Inderlied, C. B.; Young, L. S. Antimicrob. Agents Chemother. 2003, 47, 2685.
- 7. Dover, L. G.; Alahari, A.; Gratraud, P.; Gomes, J. M.; Bhowruth, V.; Reynolds, R. C.; Besra, G. S.; Kremer, L. *Antimicrob. Agents Chemother.* **2007**, *51*, 1055.
- Sriram, D.; Yogeeswari, P.; Thirumurugan, R.; Pavana, R. K. J. Med. Chem. 2006, 49, 3448.
- Cocco, M. T.; Congiu, C.; Onnis, V.; Pellerano, M. L.; De Logu, A. Bioorg. Med. Chem. 2002, 10, 501.
- Logu, A. D.; Saddi, M.; Onnis, V.; Sanna, C.; Congiu, C.; Borgna, R.; Cocco, M. T. Int. J. Antimicrob. Agents 2005, 26, 28.
- 11. Sriram, D.; Bal, T. R.; Yogeeswari, P. Bioorg. Med. Chem. 2004, 12, 5865.

- 12. Pirrung, M. C.; Pansare, S. V.; Das Sarma, K.; Keith, K. A.; Kern, E. R. J. Med. Chem. **2005**, 48, 3045.
- Bal, T. R.; Anand, B.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett. 2005, 15, 4451.
- 14. Sriram, D.; Yogeeswari, P.; Gopal, G. Eur. J. Med. Chem. 2005, 40, 1373.
- 15. Sriram, D.; Bal, T. R.; Yogeeswari, P. Med. Chem. Res. 2005, 14, 211.
- Yogeeswari, P.; Sriram, D.; Kavya, R.; Tiwari, S. Biomed. Pharmacother. 2005, 59, 501.
- 17. Periyasamy, S.; Narayanan, M.; Markandavel, C.; Robert, W. S.; Miles, K. W.; Donald, F. S. *Antiviral Chem. Chemother.* **2006**, *17*, 269.
- 18. Karalı, N.; Terzioğlu, N.; Gürsoy, A. *Arzneim.-Forsch./Drug Res.* **1998**, 48, 758.
- Karalı, N.; Gürsoy, A.; Kandemirli, F.; Shvets, N.; Kaynak, F. B.; Özbey, S.; Kovalishyn, V.; Dimoglo, A. Bioorg. Med. Chem. 2007, 15, 5888.
- Varma, R. S.; Pandey, R. K. Indian J. Chem. Sect B: Org. Chem. Incl. Med. Chem. 1982, 21B, 157.
- 21. Singh, S. P. Curr. Sci. 1988, 57, 425.
- 22. Collins, L. A.; Franzblau, S. G. Antimicrob. Agents Chemother. 1997, 41, 1004.